

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 “ The final publication is available at Springer via http://dx.doi.org/ 10.1007/978-3-319-
07593-8_33"

http://link.springer.com/chapter/10.1007/978-3-319-07593-8_33

http://hdl.handle.net/10251/61647

Springer

Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE. (2014). Performance and Results of the
Triple Buffering Built-In in a Raspberry PI to Optimize the Distribution of Information from a
Smart Sensor. Advances in Intelligent Systems and Computing. 290:279-286.
doi:10.1007/978-3-319-07593-8_33.

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Performance and results of the triple buffering built-in in

a Raspberry PI to optimize the distribution of

information from a Smart Sensor

Jose-Luis Jimenez-Garcia
1
, Jose-Luis Poza-Lujan

2
, Juan-Luis Posadas-Yagüe

2
, David

Baselga-Masia
1
, José-Enrique Simó-Ten

2

1School of Engineering in Computer Science (ETSINF)
2University Institute of Control Systems and Industrial Computing (ai2)

Universitat Politècnica de València (UPV, Camino de vera, s/n. 46022 Valencia (Spain)
1
{jojigar1 ,dabama1}@inf.upv.es

2
{jposadas,jopolu,jsimo}@ai2.upv.es

Abstract. Currently, 3D sensors can be considered an evolution of cameras by

providing the image with its depth information. These sensors have a generic

function and the programmer has to process the received information in order to

be adapted and used in a specific environment. In robots navigation, the 3D in-

formation can be useful for basic behaviours such as “obstacles avoidance” or

even more complex behaviours such as “maps generation”. In this article an im-

age management system provided by the xTion intelligent sensor is presented.

The xTion sensor provides a VGA image and a 3D depth, which allows it to be

used for several purposes. In order to distribute the data, it is acquired, pro-

cessed and sent to several clients with a triple buffer system modified to serve

the most recent image to the client. The system is programmed in C for Linux

and built-in in a Raspberry PI. The article exposes the performance and results

from monitoring the frame's delay comparing it with a simple and a double

buffer system widely used in this kind of systems.

Keywords: intelligent sensors, buffering, distributing information

1 Introduction

The use of sensors in robot navigation goes from basic survival behaviours like obsta-

cle avoiding to complex task realization like map generation. In basic survival behav-

iours, commonly associated to reactive navigation, were commonly employed sensors

with a specific task like depth or contact sensors. To complex behaviours, commonly

associated to deliberative navigation has been used information from reactive infor-

mation sensors. Currently, robots need sensors associated to behaviours. For example,

distance sensors are utilized to avoid obstacles. However, this information is useful to

build an environment map or to locate specific objects during the navigation. So, the

information that a sensor produces is interesting it to be distributed to different behav-

ioural processes.

Fig. 1. Smart resource components.

The article is organized in this order: next section introduces the related work. Sec-

tion 3 the implemented system is described, in section 4 the developed triple buffer

variation is detailed. In section 5 the experiments and results obtained are described,

finally, in section 6 the future working lines and conclusions are exposed.

2 Related work

An intelligent sensor is one that modifies its internal behaviour to optimize its abil-

ity to collect data from the physical world and communicate them in a responsive

manner to a host system [1]. Nowadays intelligent sensors with great computation

capabilities and large amount or information are offered by the technology, like image

and depth of the provided frame.

There are several smart resources employing intelligent sensors [2] generally used

on image-based systems. It seems convenient using the intelligent sensors both to

reactive navigation to deliberative navigation [3] and [4]. However, using an intelli-

gent sensor with several clients and with different client requirement implies offering

the sensor information in the more suitable way to every client and distributes it so

that the clients can control enough to perform their behaviours, especially if those

behaviours are reactive.

The fact that the information transmitted by a smart sensor can be processed and

adapted to the client needs turns it into a smart resource. [5]. Anyway, this process

and its later distribution imply a processing cost which can decrease the information

quality (figure 1).

In order to optimize the processing several methods to distribute internal infor-

mation are used. Among them, the use of multiple buffers allows process synchroniz-

ing optimizing the speed [6]. The most used methods in graphic processing are the

double and the triple buffering [7]. There are triple buffering implementations but

they are usually oriented to only one consumer or they are simulations of theoretical

models [8].

Fig. 2. System developed.

In this article it is described a smart device which involves the use of a smart sen-

sor xTion [8] with a synchronized triple buffer with no waiting times. The algorithm’s

goal is providing frames at the speed (in frames per second or fps) that the client has

requested, with minimum delay possible and without the need of synchronizing the

data sending. In the article results of delay times measuring and quality of image

sending frequency are presented.

3 System proposed description

The implemented smart resource acquires images from an xTion sensor to process it

with a Raspberry Pi [9] system which distributes it with an Ethernet connexion. These

dispositive were chosen because their low weight and ease of programming to make

prototypes that can be easily embedded as soon as the system efficiency and strength

has been checked. Nowadays the smart resource is been implemented to improve the

efficiency in robot navigation control based on the improvement of QoS and QoC

[10].

In Figure 2 it is showed the details of the system in which is used the smart re-

source. The smart device is using the OpenNI library [11] to the xTion sensor connec-

tion. The image processing is done using the OpenCV library [12], implementing the

connection and distribution with the Linux socket library. The control algorithm are

implemented in a server with MatLab [13] which processes the images to the genera-

tion of different behaviours that goes from the generation of trajectories to the map

creation. Finally it is used the robot simulation environment V-REP [14] with the goal

of including the smart resource in real robots.

The robot navigation requires the most recent information, according that, the tri-

ple buffer design presented in this article is oriented to sending the most recent frame

employing the minimal processing time possible.

4 Method

Because of the robot control system needs the most recent image; the designed triple

buffer optimizes the transmitted image making sure that it is the last one without em-

ploying more memory than a conventional triple buffer. In this article only has been

experimented with a single image processing. Is planned to realize a multiprocessing

with multiple clients in future researching. The triple buffer is managed by two

threads: the acquisition and process thread (APT), and the sending thread (ST).

The buffer's behaviours are as follows: a buffer is used for the image being ac-

quired. Another contains the image being sent and the third buffer is an auxiliary

buffer to avoid bottleneck. The triple buffer is managed by two threads: the acquisi-

tion and process thread (APT), and the sending thread (ST). The APT changes be-

tween the acquisition buffer and the auxiliary while the ST ends sending its buffer.

The Swap function does the buffer's pointers exchange which corresponds. When the

exchange is done, the APT sends a signal to ST to pick the last image. The APT be-

haviour is as follows.

1: I 0

2: Adquisition()  frame

3: while I < frame.MaxPixel do

4: frame.Process()

5: end while

6: Swap()

7: Signal()

When the ST has sent an image it waits, using the wait() function, to be communi-

cated by APT that the last image is available. As soon as the ST is unlocked by the

APT from the wait function, the ST does the buffers pointer swap to send the last

available image.

1: Wait()

2: Swap()

3: Send()

Because two threads are employed to decouple the acquisition from the distribu-

tion, we can find two scenarios: APT serves a frame faster than ST sends it and oth-

erwise. In first case, the frame sequence is lost in exchange for gain immediacy in the

information. In figure 3 the sending sequence is shown where it can be appreciated

how the frame i+2 is lost because the frame i+3 is acquired before the frame i+1 ends

being sent. In figure 4 the opposite case is shown, the ST is faster than the APT so no

message in the sequence is lost.

Fig. 3. Sequence of operation of triple buffer with APT faster than the ST.

Fig. 4. Sequence of operation of triple buffer with ST faster than the APT.

Fig. 5. Variables measured at the experiments

5 Experiments and results

To check the correct operation of triple buffer implemented, it has been tested using a

computer as smart resource to check highest level of efficiency, and a raspberry PI on

the final system. Because the system must operate in a distributed closed network,

servers and clients work with fixed IP addresses, thereby, the effect of messages noise

on network is reduced. All tests were performed with loads of 1000 frames and 30

frames per second (fps) as sampling rate. Previously, it has been verified that the

number of frames not affect the operation. Has been measured times with one, two

and four clients, comparing the performance of a simple, double and triple buffering

based server. The measured variables are the average of the all the frame delays, the

frame delay is defined in the equation 1.

 (1)

In equation 1, tadq represents the time inverted to read a frame from the xTion, twp

represents the time that the APT is waiting to obtain the frame and the tp is the time

used by the APT to process the frame, tws is the time that the ST waits for the new

frame, if it is necessary, and ts is the time inverted to send the frame to all clients. The

results for the frame delay, expressed in microseconds, obtained are shown at table 1.

Table 1. Results of the experiments (in microseconds).

 1 client 2 clients 4 clients

Variables PC RPI PC RPI PC RPI

Simple buffer 67350 3176925 66936 592390 66945 1293636

Double buffer 67350 203086 66936 334824 66945 640506

Triple buffer 66940 199647 67386 332900 66930 611752

The main difference between double and triple buffering is that the triple buffer

always has a frame ready to send. However, the triple buffer adds more delay time.

These results are predictable but it’s necessary that the smart resource can provide to

the clients in order to improve the system with quality of service policies (figure 5).

6 Conclusions

In this article a system of acquisition, processing and sending of image frames from

an intelligent sensor to several clients interested in a processed image has been pre-

sented. To provide the most recent image, a triple buffer that ensures that constraint

has been developed.

As can be seen in the table 1, when the image server is a powerful computer (PC)

differences between the types of buffer are not significant. However, an embedded

system provides less efficient results for a simple buffer, for a double buffering and

triple buffering delay times is less in the case of double buffering when we increase

the client number. So that, triple buffer offers the same updated information with an

added immediacy and more efficiently than double.

In triple buffering there is always a frame available to be sent. So that it is not nec-

essary to wait for the image acquisition to send a new frame. With this method, an

intelligent sensor can provide the same performance as the double buffering method,

but performing others tasks, as image processing, image segmentation or image resiz-

ing.

Currently, we are studying how the buffer used affects to robot navigation. Reac-

tive behaviours require information as quickly as possible, so the triple buffer seems

the most appropriate method. However, the immediacy of the double buffer, can im-

prove certain non-critical behaviours as tracking paths, due to they provide latest in-

formation, but with less immediacy.

As future work, it is planned to adapt the triple buffer to a system where the ob-

tained data from the intelligent sensor would have several distinct parallel processes,

in example, locating free paths to the robot trajectory at the same time that interesting

objects to surrounding maps generation are detected like corners, walls or door steps.

Acknowledgments: Coordinated project COBAMI: Mission-based Hierarchical

Control. Education and Science Department, Spanish Government. CICYT: MICINN:

DPI2011-28507-C02-01/02 and project “Real time distributed control systems” of the

Support Program for Research and Development 2012 UPV (PAID-06-12)

7 References

1. Brignell JE, The future of intelligent sensors: a problem of technology or

ethics? Sensors and Actuators A56 (1996) 11-15

2. Fernandes, J. Laranjeira, J. Novais, P. Goreti Marreiros, J. N. A Context

Aware Architecture to Support People with Partial Visual Impairments.

Distributed Computing and Artificial Intelligence. Advances in Intelligent

Systems and Computing Volume 217, 2013, pp 333-340

3. Chien-Hui, L. Kuan-Wei, L. Ting-Hua, C. Che-Chen, C. Charles H.-P.

Fall Detection by a SVM-Based Cloud System with Motion Sensors. Ad-

vanced Technologies, Embedded and Multimedia for Human-centric

Computing. Lecture Notes in Electrical Engineering Volume 260, 2014,

pp 37-45

4. Grzejszczak, T. Mikulski, M. Szkodny, T. Jędrasiak, K. Gesture Based

Robot Control. Computer Vision and Graphics. Lecture Notes in Comput-

er Science Volume 7594, 2012, pp 407-413

5. Lee, C.S. ; Gyu Myoung Lee ; Woo Seop Rhee. (2013) Standardization

and challenges of smart ubiquitous networks in ITU-T. IEEE Communi-

cations Magazine, 51(10), 102-110

6. Dan, A. D. Dias R. Mukherjee, D. Sitaram, R. Tewari. Buffering and

Caching in Large-Scale Video Servers. Prac. of COMPCON, 1995.

7. Tagami, Y., Watanabe, M., & Yamaguchi, Y. (2013). Development Envi-

ronment of 3D Graphics Systems. Fujitsu Scientific & Technical Journal,

49(1), 64-70.

¡Error! No

se encuen-

tra el ori-

gen de la

referencia..

Khan, S. Bailey, D. Gupta, G. Simulation of Triple Buffer Scheme. 2009

Second International Conference on Computer and Electrical Engineering

8. ASUS: Xtion Pro Live. [Online]. Available: www.asus.com

9. Edwards, C. Not-so-humble raspberry pi gets big ideas. Engineering &

Technology. Volume:8 (3). 2013. 30 - 33

10. Poza-Luján, J.L. Posadas-Yagüe, J.L. Simó-Ten, J.E. (2014) Quality of

Control and Quality of Service in Mobile Robot Navigation. International

Journal of Imaging and Robotics.. Volume 8 (1).

11. Norman Villaroman, N. Rowe, D. Swan, B. 2011. Teaching natural user

interaction using OpenNI and the Microsoft Kinect sensor. In Proceedings

of the 2011 conference on Information technology education (SIGITE

'11). ACM, New York, NY, USA, 227-232.

12. Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision

with the OpenCV library. O'reilly.

13. Ollero, A. (2005). Intelligent mobile robot navigation (Vol. 16). Springer.

14. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimen-

tation Platform V-REP: A Versatile 3D Robot Simulator. In:SIMPAR

2010. LNCS, vol. 6472, pp. 51–62. Springer, Heidelberg (2010)

