Shared Map Convolutional Neural Networks
for Real-Time Mobile Image Recognition

William Raveane and Maria Angélica Gonzalez Arrieta

Universidad de Salamanca, Salamanca, Spain

Abstract. We present a technique for improving the speed of a convo-
lutional neural network applied to large input images through the opti-
mization of the sliding window approach. Meaningful performance gains
and memory bandwidth reduction can be obtained by processing images
in this manner, factors which play a crucial role in the deployment of
deep neural networks within mobile devices.

1 Introduction

The Convolutional Neural Network (CNN) [1] has become a general solution for
image recognition with variable input data. CNNs consist of two stages — one for
automated feature learning, and another for classification — both of which can
be successfully trained in tandem through gradient descent of the error surface
[9]. Its results have consistently outclassed other machine learning approaches
in large scale image recognition tasks [6], outperforming even human inspection
of extensive datasets [2].

Compared to other feature-based computer vision methods such as SIFT [§]
or HOG [4], CNNs are much more robust and tolerant to shape and visual
variations of the images or objects intended to be recognized. However, contrary
to such methods, an execution of a CNN will only recognize features on a single
image block of size equal to the input dimensions of the network. As CNNs are
usually trained with small image patches, this recognition area is likewise small.
As a result, to run image recognition over a larger image size, it is necessary to
repeatedly apply the same network over multiple regions. This is a very common
technique named sliding windows, albeit a time consuming one as the execution
time naturally grows in proportion to the number of sampled blocks.

With the increasing use of embedded hardware, it has naturally become a
priority to endow mobile devices with computer vision capabilities. The use of
CNNs, when applied through a sliding window methodology, allows a large range
of important image recognition tasks to be carried out, many of which would
have a great impact on the everyday usage of mobile hardware by end users.
Some examples of this are text recognition [10] for visual language translators,
human action [5] and face [7] recognition for greater user interactivity with
social applications, or even traffic sign recognition [3] for embedded automotive
applications. The unique task of logo recognition is taken as a sample usage
of mobile implemented CNNs in this work, something which would have large

S. Omatu et al. (eds.), Distributed Computing and Artificial Intelligence, 485
11th International Conference, Advances in Intelligent Systems and Computing 290,
DOI: 10.1007/978-3-319-07593-8 56, (© Springer International Publishing Switzerland 2014

486 W. Raveane and M.A.G. Arrieta

opportunities for commercial applications to increase company brand loyalty,
perception and awareness among consumers, depending on the context it is used
in. However, the same methods and network architecture described here would
be equally applicable to solving similar problems, such as those described above.

Due to the high computational requirements of a CNN, the need for mobile
computer vision has traditionally been met by outsourcing image analysis to a
remote server in communication with the device over an internet connection. This
approach, while effective, introduces large delays and is hardly an appropriate
solution when user interactivity and real-time responsiveness are paramount. As
embedded hardware capacity continues to grow with each new generation of low
energy processors, this trend has gradually shifted towards implementing image
recognition algorithms on the device itself with all computations carried out
locally. Regardless, these devices continue to display performance limitations,
as well as having intrinsic architecture constraints which result in slow memory
access. It is therefore important to find new possible optimizations, so as to
better utilize the computational power of the device.

We introduce one such improvement applicable to CNNs in particular. Our
process contrasts with the traditional sliding window method where overlapping
patches of a large image are sequentially analyzed by the network over individ-
ual executions. Instead, we apply per-layer computations over the entire image
space, thereby producing a continuous flow of information from input to out-
put in a single execution of the CNN. This results in a substantial boost in the
throughput of the algorithm, especially when executed in an embedded mobile
environment. Although applicable to most other platforms, we discuss the de-
ployment of this algorithm on a mobile device as its memory access architecture
makes it particularly sensitive to the improvements of the proposed algorithm.

This paper addresses these issues in particular. In Section 2, some background
work is reviewed detailing the functionality of CNNs and sliding windows in gen-
eral. We then introduce in Section 3 an optimized approach for the techniques
discussed herein, including the architecture constraints that must be made to
implement the proposed system. Finally, Section 4 concludes with the results ob-
tained from the optimized method when compared to the traditional sequential
algorithm and visits possible future enhancements to the presented work.

2 Background

The network on which our system is based upon is a standard CNN composed of
alternating convolutional and max-pooling layers for the feature extraction stage,
and one or more linear layers for the final classification stage. Fig. 1 depicts the
layer structure of such a network, and it is the reference architecture used here
to describe the concepts of the framework presented.

The first layer in the network consists of one or more neurons containing the
image data to be analyzed, usually composed of the three color channels of the
incoming image.

Shared Map Convolutional Neural Networks 487

INPUT 12C5 + 12MP2 32C5 + 32MP2_ 128L < 2L (OUTPUT)

S>===77 AN DN N DN N STTTTT7 N STTT==7 N

Neuron
Map Size: 32x32 28x28 14x14 10%x10 5x5 1x1 1x1
(Scalar) (Scalar)

Fig. 1. A typical convolutional neural network architecture, with three input neurons
for each color channel of an analyzed image patch, two feature extraction stages of
convolutional and max-pooling layers, and two linear layers to produce a final one-vs-
all classification output

The notation N; X K is used to describe the following layers, where Nj; is the
neuron map count of layer j, X € {C, M P, L} denotes the layer type, and K is
the primary parameter value for the neurons in that layer.

The first part of every feature extractor stage is a convolutional layer. Each
neuron linearly combines the convolution of one or more maps from the preceding
layer. The map of a neuron in this layer will be slightly smaller than the incoming
maps by an amount referred to as the kernel padding. This padding arises from
the boundary conditions of the convolution algorithm and is defined as Ki/2 —1,
where K is the size of the convolutional kernels of layer j. Therefore, the layer’s
map size will be given by M; = M;_; —Ki/2—1, where M;_; is the the preceding
layer’s map size.

Every convolutional layer is paired to a max-pooling layer which primarily
reduces the dimensionality of the data. A neuron in this layer acts on a single
map from a corresponding convolutional neuron in the previous layer. Its task
is simply to pool as many adjacent values in the map as stated by the pool size
parameter, to then determine the maximum value among them, and finally to
pass this value as a subsample of the pooled region. The result is a map size that
is inversely proportional to said parameter as given by M; = Mj-1/p;, where P;
is the pooling size factor of this layer.

The linear layers classify the final feature maps extracted on the previous
layers by means of a linear combination operation identical to that of a regular
multi layer perceptron, working with single pixel maps for both their input and
output, such that M; =1 at every layer.

Ultimately, the output of the final classification layer decides the best match-
ing class describing the input image, according to preselected training targets.
Fig. 2 shows the information flow leading to this classification for a given im-
age patch, where the CNN has been trained to identify a particular brand logo.
The output of this execution is composed of two scalar values, each one repre-
senting the likelihood that the analyzed input image belongs to that neuron’s
corresponding class. In this case the logo has been successfully recognized as is
dictated by the higher valued output neuron for the class "Logo”.

Image recognition of images larger than the input size of a CNN is imple-
mented by the sliding window approach, and its performance is intrinsically

488 W. Raveane and M.A.G. Arrieta

Per-Window CNN Execution

INPUT 12C5 + 12MP2 32C5 + 32MP2 128L OUTPUT

Map Size: 32x32 Map Size: 14x14 Map Size: 5x5 Map Size: 1x1 Map Size: 1x1

Map Count: 3 Map Count: 12 Map Count: 32 Map Count: 128 Map Count: 2
! ‘ Ein . "

o I

Fig. 2. A visualization of the data flow through the network, showing the first three
neuron maps of each stage of the CNN. Note the data size reduction induced at each
stage.

dependent on the details of this method. This algorithm is defined by two quan-
tities, the window size .S, usually fixed to match the network’s designed input
size; and the window stride T', which specifies the distance at which consecutive
windows are spaced apart. The stride distance, therefore, inherently establishes
the total number of windows analyzed for a given input. Therefore, it is impor-
tant to choose the stride wisely, as this distance is inversely proportional to the
resolution of the classifier, but also to the computing power invested in analyzing
the number of resulting windows, W. For an input image of size I, X I, the
total window count is given by:

(I, =S I, —S I,
W—(T —|—1>< T +1) = W T2

Figure 3 depicts the operation of this method applied on an input image
downsampled to 144x92, extracting individual windows with S = 32 for the
simplified case where T' = S/2. A network analyzing this image would therefore
require 40 executions to fully analyze the extracted window. The computational
requirement is further compounded when a smaller stride is selected — an ac-
tion necessary to improve the resolving power of the classifier. At T' = /s, for
example, 464 separate CNN executions would be required.

sy I @ &

Classified As: Background Logo Background

Fig. 3. An overview of the sliding window method, where an input image is subdivided
into smaller overlapping image patches, each being individually analyzed by a CNN

Shared Map Convolutional Neural Networks 489

3 Optimized Network Execution

The method we propose introduces a framework wherein the chosen stride has
no significant impact at all on the execution time of the feature extraction stages
of a CNN — the most computationally demanding section of the network — as
long as the selected stride is among a constrained set of possible values. This
is made possible by two considerations. (i) Allowing each layer of the CNN to
process the entire image at once as a single shared map instead of individually
processing single windows. (ii) Guiding the image data through the network so
as to perfectly align individual pixels over computational columns spanning the
various network layers, by virtue of the imposed stride constraints.

By their nature, convolutional neural networks are designed with built-in po-
sitional tolerance. This is in part achieved by the reuse of the same convolutional
kernel over the whole neuron map. Similarly, a max-pooling neuron performs the
same singular algorithmic action at any point within its map. As a result of this
behavior, the output of these layers is independent of the pixel offset within the
map, such that overlapping windows will share the same convolved values. This
is demonstrated in Fig. 4.

g upe [T

lIriput Windows 12C5 + 12MP5 Result Overlapping Region

Fig. 4. Two adjacent windows extracted from an input image, passed through the 12C5
+ 12MP5 feature extractor. A detailed view of the convolved maps in the overlapping
top-right and bottom-left quarters of each window show that these areas match exactly.

This leads to the possibility of streamlining the feature extractors by running
their algorithms over the full input image at once. Hence, each C + MP neuron
will output a single map shared among all windows, where subdivisions of this
map would normally match the outputs of the corresponding windows, had they
been executed separately as in the traditional method. This greatly reduces the
expense of re-calculating convolutions on overlapping regions of each window.

Figure 5 shows an overview of the shared map process, which passes the
input image in its entirety through each stage of the network. By doing this,
the output layer now produces a continuous and localized class distribution over
the image space, a result which contrasts greatly to that of a single classification
value as was previously seen in Fig. 2. The output of this execution consists of
image maps where each pixel yields the relative position of all simultaneously
classified windows. Similar to the per-window execution method, the intensity
value of a pixel in the output map represents the classification likelihood of the
corresponding window. Note how the relative position of both logos in the input
image has been discovered after only one shared map execution of the network.

490 W. Raveane and M.A.G. Arrieta

An account of the window size and stride is also displayed, illustrating how it
evolves after each layer, while the total window count remains the same. Here,
the correspondence of each 32x32 window in the input image can be traced to
each 1x1 pixel in the output maps.

Shared Map CNN Execution
INPUT 12C5 + 12MP2 32C5 + 32MP2 128L OUTPUT
Map Size: 144x92 Map Size: 70x44 Map Size: 32x20 Map Size: 29x16 Map Size: 29x16

Map Count: 3 Map Count: 12 Map Count: 32 Map Count: 128 Map Count: 2

" o o+ - -

1 Bk

Mot

YT%

Logo

Sole shared execution
results in localization
over the entire image

£ Window . Window Window %, Window %, Window
@ Size: 32x32 EI Size: 14x14 Size: 5x5 Size: 1x1 Size: 1x1

Stride: 4x4 Stride: 2x2 Stride: 1x1 Stride: 1x1 Stride: 1x1
Overlap: 98% Overlap: 98% Overlap: 96% Overlap: 0% Overlap: 0%
Count: 29x16 Count: 29x16 Count: 29x16 Count: 29x16 Count: 29x16

Fig. 5. The shared map execution method for a convolutional neural network, where
each layer processes an entire image in a single pass, where each neuron is now able to
process maps with dimensions that far exceed the layer’s designed input size.

The operation of the shared map process relies heavily on the details of the
dimensionality reduction occurring at each layer within the network. For this
reason, it is necessary to lay certain constraints that must be enforced when
choosing the optimum sliding window stride. The window size and stride at each
layer is affected by the parameters of the layer in a well-defined manner:

Sj-1—K;—1 if je Convolutional Layers

S;=45j-1/P; if j € Max Pooling Layers
Si-1 ifj € Linear Layers
Ti-1 if j € Convolutional Layers
T, =<T;_1/F; if j € Max Pooling Layers
Ti-1 if j € Linear Layers

Where the size S; and stride T} of a window at layer j depends on the pa-
rameters of the layer and the size and stride values at the preceding j — 1 layer.

Shared Map Convolutional Neural Networks 491

This equation set can be applied over the total number of layers L of the
network, while keeping as the target constraint that the final size and stride
must remain whole integer values. By regressing these calculations back to the
input layer j = 0, one can find that the single constraint at that layer is given
by:

=r {P] if j € Max Pooling Layers
Ty | H :
pale 1 otherwise

In other words, the input window stride must be divisible by the product of

the pooling size of all max-pooling layers in the network.

Choosing the initial window stride in this manner, will ensure that every pixel
in the final output map corresponds to exactly one input window.

4 Results and Conclusions

Table 1 gives a summary of the results of this technique. The tests were carried
out on a mobile device equipped with a quad core 1.3 GHz Cortex-A9 CPU and
a 12-core Tegra 3 GPU, running a parallel optimized GPU implementation of
the CNN architecture in Fig. 1 over a large 512x512 input image.

Table 1. Results of tests with several input layer stride Tp configurations, from the
closest packed 4x4 to the non-overlapping 32x32 layouts. A window count W and
the overlap coverage O is shown for each window stride selection. An average over 20
test runs for each of these configurations was taken as the execution time for each of
the methods described herein — the traditional per-window execution method, and our
shared map technique.

To w (0] Execution Time (ms) Speedup
Per-Window Shared Map
4x4 14,400 98.4% 115,212 4,087 28.1
8x8 3,600 93.8% 28,847 1,548 18.6
12x12 1,600 85.9% 12,789 1,025 125
16x16 900 75.0% 7,234 843 8.5
20x20 576 60.9% 4,608 757 6.1
24x24 400 43.8% 3,189 686 4.7
28x28 289 23.4% 2,312 621 3.7
32x32 225 0.00% 1,801 599 3.0

It is of great interest to note the final 32x32 configuration. Regardless of the
fact that there is no overlap at this stride, a 3.0 speedup is observed over run-
ning the windows individually. This is due to our method introducing inherent
memory bandwidth reductions through its pipelined execution approach, where

492 W. Raveane and M.A.G. Arrieta

the entire image needs to be loaded once per execution. This contrasts the tradi-
tional approach where loading separate windows into memory at different times
requires each to be individually sliced from the original memory block — a very
expensive operation in the limited memory throughput of mobile devices.

Acknowledgements. This work has been carried out by the project Sociedades
Humano-Agente: Inmersiéon, Adaptacion y Simulacién. TIN2012-36586-C03-03.
Ministerio de Economa y Competitividad (Spain). Project co-financed with
FEDER funds.

References

1. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexi-
ble, High Performance Convolutional Neural Networks for Image Classication. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial In-
telligence, pp. 1237-1242 (2011)

2. Ciresan, D.C., Meier, U., Gambardella, .M., Schmidhuber, J.: Convolutional Neu-
ral Network Committees For Handwritten Character Classification. In: 11th Inter-
national Conference on Document Analysis and Recognition, ICDAR (2011)

3. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: Multi-Column Deep Neural
Network for Traffic Sign Classification. Neural Networks (32), 333-338 (2012)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1, pp. 886-893 (June 2005)

5. Ji, S., Xu, W., Yang, M., Yu, K.: 3D Convolutional Neural Networks for Human
Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 35, 221-231 (2013)

6. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks, vol. 25, pp. 1106-1114 (2012)

7. Lawrence, S., Giles, C., Tsoi, A.C., Back, A.: Face recognition: a convolutional
neural-network approach. IEEE Transactions on Neural Networks 8(1), 98-113
(1997)

8. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. In: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
CVPR 2006, vol. 2, pp. 2169-2178 (2006)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE (November 1998)

10. Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with con-
volutional neural networks. In: ICPR, pp. 3304-3308. IEEE

	Shared Map Convolutional Neural Networks
for Real-Time Mobile Image Recognition

	1 Introduction
	2 Background
	3 Optimized Network Execution
	4 Results and Conclusions
	References

