
Classification Rule Mining with Iterated Greedy

Juan A. Pedraza1, Carlos Garćıa-Mart́ınez2, Alberto Cano2, and Sebastián
Ventura2

1 I+D Dpt., Yerbabuena Software,
Málaga 29590, España, jantpedraza@gmail.com

2 Dpt. of Computing and Numerical Analysis, University of Córdoba,
Córdoba 14071, España, cgarcia@uco.es,acano@uco.es,sventura@uco.es

Abstract. In the context of data mining, classification rule discovering
is the task of designing accurate rule based systems that model the useful
knowledge that differentiate some data classes from others, and is present
in large data sets.
Iterated greedy search is a powerful metaheuristic, successfully applied to
different optimisation problems, which to our knowledge, has not previ-
ously been used for classification rule mining.
In this work, we analyse the convenience of using iterated greedy al-
gorithms for the design of rule classification systems. We present and
study different alternatives and compare the results with state-of-the-art
methodologies from the literature. The results show that iterated greedy
search may generate accurate rule classification systems with acceptable
interpretability levels.

Keywords: Classification rule mining, iterated greedy, interpretability

1 Introduction

Data mining [1] involves the use of data analysis tools to discover useful knowl-
edge from large data sets. Classification is a form of data analysis that extracts
models describing important data classes by means of their properties. Classifi-
cation has been successfully applied to several fields such as medical diagnosis or
credit risk evaluation, among others, by means of several approaches of very dif-
ferent nature, for instance, artificial neural networks, support vector machines,
or instance-based techniques [2].

Rule-based systems [3] are a representation paradigm that models the knowl-
edge of a specific area of interest by means of sets of rules with an antecedent
and one consequent. When applied to classification problems, the antecedents of
the rules define some property relations, which are oftenly present in particular
sets of patterns, and the consequents emit predictions of the class they belong.
Comprehensibility is one of the benefits that rule-based systems possess and
have lately attracted the attention of the research community [4–7].

Iterated greedy search (IG) is a simple yet effective metaheuristic that has
been successfully applied to different combinatorial problems [8–12]. IG explores



the solution search space by iterating over a greedy process applied to a single
solution and composed by two main phases: destruction and construction. During
the destruction phase, some solutions components are removed, producing a
partial solution. Afterwards, the construction phase applies a greedy heuristic
to complete this partial solution.

To our knowledge, IG has not previously been applied to the design of rule-
based classification systems. In this work, we are interested in analysing the
possibility and benefits of generating rule classification systems according to the
iterative IG framework. Consequently, we address it as a combinatorial prob-
lem where a solution represents a rule based system and undergoes through an
iterative process of destruction and construction.

The rest of this work is structured as follows. In Section 2, we address the
adaptation of the IG metaheuristic to the problem of generating good rule clas-
sification systems. In Section 3, we present several empirical studies aimed at:
1) analysing the influence of the parameters and settings associated with the
method that provide accurate rule classification systems, and 2) comparing the
resulting IG algorithm for classification rule mining (IG-RMiner) with other
prominent approaches from the literature in terms of accuracy and interpretabil-
ity. Finally, in Section 4, we discuss conclusions and future work.

2 An IG model for rule mining

In this section, we describe our adaptation of the IG model for rule mining.
The main framework is presented in Section 2.1, and the alternatives for the
construction phase, in Section 2.2.

2.1 General scheme of the IG for rule mining

Figure 1 depicts the outline of our IG metaheuristic for classification rule mining
(IG-RMiner). It starts from a single initial solution, a rule-based classification
system, generated from scratch by an heuristic construction procedure (steps 1-3;
Section 2.2). Afterwards, it iterates through a main loop in which first, a partial
solution Sd is obtained at the destruction phase (step 5), and second, a com-
plete candidate solution Sc is reconstructed by applying the same construction
procedure to Sd (step 6). A pruning phase is added to improve the constructed
solution, if possible (step 7). Before continuing with the next iteration, an ac-
ceptance criterion decides whether the solution returned by the pruning phase,
Sp, becomes the new current solution (step 11). The process iterates until some
termination conditions have been met (e.g. maximum number of iterations, or
maximum computation time allotted). The best solution, Sb, generated during
the iterative process is kept as the overall result.

The specific features of the IG-RMiner are:

– The method starts with an empty solution with one rule per class and no
conditions in their antecedents. When classifying a new pattern, conflicts are
resolved according to the rule with higher accuracy.



Input:
Greedy-construction(·): Greedy construction procedure

Acceptance-criterion(·,·): Acceptance criterion

Stop-condition: Stop condition

pd: Probability for removing conditions

Output: Sb: Best solution generated

1 Sd ← ∅;
2 S← Greedy-construction(Sd);

3 Sb ← S;

4 while Stop-condition is not reached do
5 Sd ←destruction(S, pd);
6 Sc ← Greedy-construction(Sd);

7 Sp ← pruning(Sc);

8 if Sp is better than Sb then
9 Sb ← Sp;

10 end

11 S← Acceptance-criterion(S, Sp);

12 end

13 return Sb;

Fig. 1. Pseudocode of the IG-RMiner model

– The heuristic construction procedure intents to improve the quality of the
rules by appending new conditions, one by one, to their antecedents. Sec-
tion 2.2 specifies the analysed alternatives for selecting the rule to be im-
proved, the condition to be added, and the quality measure to be considered.
This phase iterates until there is not any other condition able to improve
the quality measure.

– The standard destruction mechanism of IG removes a percentage of random
components of the current solution. In our case, the destruction removes a
percentage of conditions from some rules, at random.

– The pruning phase revises the conditions in the antecedents of the rules
checking whether their individual extraction might improve the global ac-
curacy of the system. If this is the case, the revised condition is removed.
This situation may occur, for instance, when the construction phase has in-
cluded several conditions in the rules step by step, but the last included ones
interfere with some others previously inserted.

– Two acceptance criteria, commonly applied in standard IGs, have been stud-
ied in this work: replace if and only if the new solution is better than the
current one (RB - replace if better) [13], and replace always (RA) [9, 14, 15].
This latter produces higher diversification in the search process carried out
by the algorithm.



– The rule based system that is returned at the end is the one with the highest
percentage of correctly classified patterns.

2.2 Construction phase

Given a partial solution, i.e., a rule system, with some conditions in the an-
tecedents of its rules, this phase intends to improve the quality of the system
and/or its rules by iteratively appending new conditions, until no condition pro-
ducing an improvement is found. To carry out this goal, we have identified three
task to be addressed, and analysed different strategies for each one:

Selection of the rule to be improved: We have studied the performance gained
when the algorithm tries to optimise either the rule with the lowest accuracy
(LAR - lowest accuracy rule) or a randomly selected one (RR - random rule).

Selection of the condition to be inserted: Once the rule has been selected, the set
of compatible conditions (those that do not contradict the current antecedent of
the rule) is examined. The grammar in Figure 2 specifies the possible conditions
to be generated. Then, two strategies are analysed:

– Best improvement (BI): This strategy appends the condition that yields the
best improvement in the rule, if this condition exists.

– First improvement (FI): This strategy scans through the compatible condi-
tions, in a random order, and chooses the first one that improves the quality
of the rule, if this condition exists.

〈S〉 → 〈condition〉
〈condition〉 → 〈op num〉〈var num〉〈value〉
〈condition〉 → 〈op nom〉〈var cat〉〈value〉
〈op num〉 →≤ | ≥
〈op cat〉 →= | 6=
〈var num〉 → Any valid numerical attribute in data set

〈var cat〉 → Any valid categorical attribute in data set

〈value〉 → Any valid corresponding value

Fig. 2. Grammar used to create single attribute-value conditions

Evaluation of the quality improvement: We have studied three quality criteria to
evaluate whether the insertion of one condition in the antecedent of the selected
rule is or is not favourable (only one at a time):



– Global accuracy Improvement with penalisation for errors (GI): This mea-
sure is defined as the percentage of correctly classified patterns minus the
percentage of incorrectly classified ones. Initial experiments reported poor
results if only the percentage of correctly classified patterns was evaluated,
so this correction was analysed in the study. According to this criterion, new
accepted conditions necessarily result in an accuracy improvement of the rule
classification system, and no condition that reduced the global accuracy, with
regard to the current state, would be inserted.

– Rule accuracy Improvement (RI): Rule accuracy is defined as the percent-
age of patterns correctly classified by the rule, i.e., those covered by its
antecedent that belong to the predicted class (true positives - TP) and those
not covered that belong to a different class (true negatives - TN) (Equa-
tion 1; NP is the number of patterns). This metric is the common accuracy
measure for binary classification [16, 17]. According to this, new conditions
result in an accuracy improvement of the rule, but not necessarily of the
global system. Even though, the iterative alternation between construction
and destruction phases of IG, with the intention of getting accurate rules,
might produce more accurate systems. That is the reason why this criterion
is studied.

– Sensitivity-Specificity Multiplication (SS): Given a binary classifier (for in-
stance, one rule of our system), its sensitivity is defined as the percentage of
correctly classified positive patterns (Equation 2); and its specificity is the
percentage of correctly classified negative patterns (Equation 3). Both mea-
sures should be maximised. Then, the quality of the condition to be inserted
is evaluated as the improvement on the multiplication of both metrics, as it
is done in other works [4, 18].

Rule accuracy =
TP + TN

NP
(1)

Sensitivity =
TP

TP + FN
(2)

Specifity =
TN

TN + FP
(3)

Therefore, up to 12 combinations of decision strategies for the construction
phase, shown in Table 1, are analysed in this work. For instance, the combination
referred to by RR-FI-RI accepts the first condition that appended to a randomly
chosen rule, improves the accuracy of that rule.

3 Experiments

We have implemented the different IG-RMiner versions in Weka [19] and per-
formed experiments on an Intel Core i7-930 quad-core 2.80GHz computer with
12GB RAM (only one thread per run). Table 2 shows the characteristics of the
used 22 datasets from the UCI [20].



Table 1. Construction strategies combinations

Quality evaluation
GI RI SS

Rule LAR BI 1. LAR-BI-GI 2. LAR-BI-RI 3. LAR-BI-SS
/ FI 4. LAR-FI-GI 5. LAR-FI-RI 6. LAR-FI-SS

Condition RR BI 7. RR-BI-GI 8. RR-BI-RI 9. RR-BI-SS
FI 10. RR-FI-GI 11. RR-FI-RI 12. RR-FI-SS

Table 2. Used datasets

Name # Patterns # Attributes #Classes
1.Australian 690 14 2
2.Balance-scale 625 4 3
3.Breast-cancer 286 9 2
4.Bupa 345 6 2
5.Car 1728 6 4
6.Chess 3196 36 2
7.Contraceptive 1473 9 3
8.Dermatology 366 34 6
9.Flare 2 1066 11 6
10.German 1000 20 2
11.Haberman 306 3 2
12.Ionosphere 351 33 2
13.Iris 150 4 3
14.Lymph 148 18 4
15.Page-blocks 5472 10 5
16.Segment-challenge 2310 19 7
17.Sonar 208 60 2
18.Tae 151 5 3
19.Thyroid 7200 21 3
20.Tic-tac-toe 958 9 2
21.Vehicle 846 18 4
22.Zoo 101 16 7

Non-parametric tests have been used to compare the results of different algo-
rithms or instances [21]. Specifically, we have considered two alternative methods
to analyse the experimental results:

– Iman and Davenport’s test [22] and Holm’s method [23] as a post hoc pro-
cedure. The first test is used to see whether there are significant statistical
differences among the results of a certain group of classifiers. If differences
are detected, then, Holm’s test is employed to compare the best classifier
(control classifier) with the remaining ones.

– Wilcoxon matched-pairs signed-ranks test [24], which compares the results
of two algorithms directly.

In Section 3.1, we address the setting and election of the parameters and
decision strategies of IG-RMiner that result in better classifiers. In Section 3.2,
we compare the characteristics of the best IG-RMiner instance with regards to
state-of-the-art classification techniques.



3.1 Parameter tuning

Here, we intend to find the combinations, under a full factory design, of accep-
tance criteria ({RB,RA}), construction components combination (Table 1), and
percentage of destructed conditions (pd ∈ {10%, 25%, 50%}) of IG-RMiner, that
capacitate it to generate classifiers with high accuracy. The algorithm instances
are tested using 5-fold cross-validation on the data sets aforementioned with
5, 50 and 120 seconds as stop conditions for data sets with less than 10, 30,
or more attributes, respectively (which are values comparable to those of some
algorithms in the following section).

Table 3 shows the mean accuracy levels reached by the best ten IG-RMiner
instances (out of 72) on 5 independent runs and all the data sets, together with
their mean ranking values. Though Holm’s procedure did not find significant
differences between the best ranked variant and many others, we observe some
commonalities among the best instances:

Table 3. Avg. accuracy, mean ranking and Holm’s test on the IG-RMiner variants

IG-RMiner instance Accuracy Ranking

IG-RMiner(50%,RR-BI-SS,RA) 78.2309 11.2500
IG-RMiner(50%,RR-FI-RI,RA) 77.6537 12.1818
IG-RMiner(50%,RR-FI-SS,RA) 77.7715 12.7500
IG-RMiner(50%,RR-BI-RI,RA) 76.9077 15.5455
IG-RMiner(25%,RR-BI-SS,RA) 76.1675 16.8864
IG-RMiner(25%,RR-FI-SS,RA) 76.2823 17.5455
IG-RMiner(25%,RR-FI-RI,RA) 75.9686 18.1136

IG-RMiner(50%,LAR-FI-SS,RA) 72.4367 19.1591
IG-RMiner(50%,LAR-FI-RI,RA) 71.4831 20.4773
IG-RMiner(25%,LAR-FI-SS,RA) 73.0086 20.5000

· · · · · · · · ·

– All the best variants iterate always from the most recent solution, replacing
always the current solution (RA), instead of from the best one.

– Seven variants, the best ranked ones, select a random rule to be improved
at the construction phase (RR), not the one with lowest accuracy. On the
contrary, there does not seem to exist a clear preference for the condition to
be inserted (BI or FI), nor the quality criterion to be evaluated. Regarding
this latter, no algorithm between these ten variants considers the global
accuracy improvement (GI).

– Most the variants, and the ones in better positions, destroy 50% of the
conditions of the rule system per iteration.

Having noticed that the best ranked algorithm, IG-RMiner(50%,RR-BI-SS,RA),
satisfies all of previous conclusions, we will compare it with other significant



classification techniques in terms of accuracy, interpretability and learning time.
From now on, this instance will be referred to by just IG-RMiner.

3.2 Comparison with salient classification techniques

In this Section, we compare IG-RMiner with 10 other significant classification
techniques, covering among others, evolutionary based techniques, ant colony
optimization, fuzzy rule systems, and classic decision tree generators: ICRM [4],
MPLCS [25], ILGA [26], CORE [27], SLAVE [28], GFS-GP [29], DTGA [30],
AntMiner+ [31], RIPPER [32], C45R [33]. In particular, ICRM recently proved
to be able to generate sufficiently accurate and easily interpretable rule classifi-
cation systems. In this study, we will analyse the reached accuracy levels of the
algorithms, the consumed computation time, and several measures that assess
how interpretable the generated systems are, namely, the number of rules, num-
ber of conditions (global and mean per rule), and complexity metric [34]. This
latter computes the ratio between the number of classes covered and conditions
of the rule system (Equation 4):

complexity =
m∑r
i=1 ni

(4)

where m is the number of classes, r is the number of rules, and ni is the num-
ber of conditions used in the ith rule. This measure returns the value 1 when
the classifier contains one rule per class using only one condition each and it
approaches 0 if there are more rules and conditions. If there are less rules than
classes or there exists a default rule without conditions, this measure can be
higher. In any case, we have limited the result to 2 times the number of classes.

For these experiments, IG-RMiner was tested using 10-fold cross-validation,
the time limits showed in [4] for ICRM, and 5 independent runs. This setting is
in accordance with the experimentation in [4], from where the results of previous
algorithms were obtained.

Table 4 and Figure 3 summarise the results. The former shows the algorithms
and their mean ranking values ordered, over all the datasets and runs, per per-
formance measure. Statistical performance differences between IG-RMiner and
the corresponding algorithm according to the Wilcoxon’s test and 5% as sig-
nificance factor are presented in italics with the character ‘*’ at the beginning.
IG-RMiner is highlighted in boldface for reference purposes. When IG-RMiner
appears higher in the table, that means that IG-RMiner is statistically better
than the corresponding algorithm, and vice versa. More detailed results can be
consulted at http://www.uco.es/grupos/kdis/kdiswiki/index.php/IG-RMiner.

From the results in Table 4, we can see that IG-RMiner is able to generate
accurate rule classification systems very fast, because it is among the best al-
gorithms with regards to accuracy and time and the Wilcoxon’s test does not
find significant differences with regards to the best one. Additionally, IG-RMiner
obtains competitive results in the interpretability performance measures, being
significantly outperformed just by ICRM. The worst results are located in the



Table 4. Algorithms’ ranking values per performance measure

Accuracy Time #Rules

MPLCS 3.08 IG-RMiner 3.04 IG-RMiner 2.48
DTGA 4.42 C45R 3.29 ICRM 2.56

IG-RMiner 4.46 RIPPER 3.56 *CORE 3.79
C45R 4.88 DTGA 4.29 *SLAVE 4.63
ICRM 5.08 *ICRM 4.5 *AntMin+ 4.65

RIPPER 5.46 *AntMin+ 7.1 *MPLCS 5.06
AntMin+ 6.96 *SLAVE 7.46 *C45R 7.04

ILGA 7.67 *MPLCS 7.75 *RIPPER 8.13
SLAVE 7.73 *GFS-GP 7.96 *ILGA 8.5
GFS-GP 7.9 *CORE 8.33 *DTGA 8.71
*CORE 8.38 *ILGA 8.71 *GFS-GP 10.46

#Conds #Conds/#Rules Complexity

*ICRM 1.79 *ICRM 1.9 *ICRM 1.43
IG-RMiner 3.92 SLAVE 5.17 IG-RMiner 3.32

CORE 4.38 CORE 5.29 *CORE 4.26
SLAVE 4.52 AntMin+ 5.33 AntMin+ 4.56

AntMin+ 4.56 C45R 5.58 *MPLCS 5.02
*MPLCS 5.25 MPLCS 6,08 SLAVE 6.06
*C45R 6.29 IG-RMiner 6.19 *C45R 6.23

*RIPPER 7.33 RIPPER 6.29 *RIPPER 7.43
*DTGA 8.75 GFS-GP 7.31 *DTGA 8.58
*ILGA 9.04 *DTGA 7.81 *ILGA 8.97

*GFS-GP 10.17 *ILGA 9.04 *GFS-GP 10.08

ratio between the number of conditions and number of rules. We have identi-
fied that this is due to IG-RMiner tends to create complex rules, with many
conditions, in a few data sets where there are not many classes. Additionally,
we observe that MPLCS and DTGA are the most accurate methods but they
obtain poor interpretable performance values, and ICRM provides the most in-
terpretable systems, not much less accurate, but requiring a bit longer times.
Therefore, IG-RMiner stands in an intermediate position.

From the visual representation in Figure 3, apart from the clear bias to
interpretable classifiers because of the number of associated measures, we observe
that ICRM and IG-RMiner are the two algorithms with the smallest associated
areas, which is better. The other algorithms have larger associated areas, because
either they generally get worse ranking values, or, although obtaining better
accuracy values, their results in the interpretability metrics are inferior.



Accuracy

#Rules

#Conds/#Rules

#Conds

Complexity

Time

1

6

11

IG-RMiner

ICRM

C45R

MPLCS

AntMin+

CORE

SLAVE

DTGA

Fig. 3. Algorithms’ rankings per performance measure. RIPPER, ILGA, GFS-GP are
not represented to make the graph clearer, because they did not get better ranking
values than IG-RMiner in neither accuracy nor any interpretability metric

4 Conclusions

We have studied the application of the IG metaheuristic to the problem of de-
signing rule classification systems. Different alternatives have been tested for the
construction phase and acceptation criterion of the IG. The result is a technique
that constructs accurate rule classification systems with acceptable interpretabil-
ity levels, with regards to 10 other methodologies from the literature on 22 data
sets from the UCI. In particular, the obtained IG-RMiner algorithm iterates
through a process in which conditions are randomly destroyed and inserted into
the antecedents of random rules to enhance their sensitivity and specificity val-
ues.

In our opinion, this line of research is worthy of further studies. We intend
to explore the following avenues of research: 1) to include some interpretability
criteria in the search process of IG-RMiner in order to obtain even simpler rule
classification systems without a drastic undesirable effect on their accuracy lev-
els; and 2) to analyse the application of IG adaptations to other data mining
problems, such as rule association mining [35].



Acknowledgments

This work was supported by the research projects TIN2011-22408 and TIN2012-
37930-C02-01.

References

1. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Publishers, San Francisco, CA, USA (2005)

2. Liao, S.-H., Chu, P.-H., Hisao, P.-Y.: Data mining techniques and applications - A
decade review from 2000 to 2011. Expert Syst. Appl. 39(12), 11303–113011 (2012)

3. Richards, D.: Two decades of ripple down rules research. Knowl. Eng. Rev. 24,
159–184 (2009)

4. Cano, A., Zafra, A., Ventura, S.: An interpretable classification rule mining algo-
rithm. Inform. Sciences 240, 1–20 (2013)

5. Cano, J., Herrera, F., Lozano, M.: Evolutionary stratified training set selection for
extracting classification rules with trade off precision-interpretability. Data Knowl.
Eng. 60, 90–108 (2007)

6. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques
and performance measures for genetics-based machine learning: accuracy and inter-
pretability. Soft Comput. 13, 959–977 (2009)

7. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empiricial
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decis. Support Syst. 51, 141–154 (2011)

8. Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In
Cliques, coloring, and satisfiability: Second DIMACS implementation challenge 26,
245–284 (1996)

9. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. Eur. J. Oper. Res. 177, 2033–2049 (2007)

10. Lozano, M., Molina, D., Garćıa-Mart́ınez, C.: Iterated greedy for the maximum
diversity problem. Eur. J. Oper. Res. 214, 31–38 (2010)

11. Rodriguez, F., Lozano, M., Blum, C., Garćıa-Mart́ınez, C.: An Iterated greedy al-
gorithm for the large-scale unrelated parallel machines scheduling problem. Comput.
Oper. Res. 40(7), 1829–1841 (2013)

12. Garćıa-Mart́ınez, C., Rodriguez, F.J., Lozano, M.: Tabu-enhanced iterated greedy
algorithm: A case study in the quadratic multiple knapsack problem. Eur. J. Oper.
Res. 232, 454–463 (2014)

13. Ying, K.-C., Cheng, H.-M.: Dynamic parallel machine scheduling with sequence-
dependent setup times using an iterated greedy heuristic. Expert Syst. Appl. 37(4),
2848–2852 (2010)

14. Lozano, M., Molina, D., Garćıa-Mart́ınez, C.: Iterated greedy for the maximum
diversity problem. Eur. J. Oper. Res. 214, 31–38 (2011)

15. Garćıa-Mart́ınez, C., Rodriguez, F.J., Lozano, M.: Tabu-enhanced iterated greedy
algorithm: A case study in the quadratic multiple knapsack problem. Eur. J. Oper.
Res. 232, 454–463 (2014)

16. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inform. Process. Manag. 45(4), 427–437 (2009)

17. Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of per-
formance measures for classification. Pattern Recogn. Lett. 30(1), 27–38 (2009)



18. Zafra, A., Ventura, S.: Multi-instance genetic programming for predicting student
performance in web based educational environments. Appl. Soft. Comput. 12(8),
2693–2706 (2012)

19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemannr, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009)

20. Bache, K., Lichman, M.: UCI Machine Learning Repository
http://archive.ics.uci.edu/ml, University of California, Irvine, School of Infor-
mation and Computer Sciences (2013)

21. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study
on the CEC’2005 special session on real parameter optimization. J. Heuristics 15(6),
617–644 (2009)

22. Iman, R., Davenport: J. Approximation of the critical region of the Friedman
statistic. In Communications in statistics, 571–595 (1980)

23. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6, 65–70 (1979)

24. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80-83
(1945)

25. Bacardit, J., Krasnogor, N.: Performance and efficiency of memetic Pittsburgh
learning classifier systems. Evol. Comput. 17, 307–342 (2009)

26. Guan, S., Zhu, F.: An incremental approach to genetic-algorithms-based classifi-
cation. IEEE T. Syst. Man. Cy. B 35, 227–239 (2005)

27. Tan, K., Yu, Q., Ang, J.: A coevolutionary algorithm for rules discovery in data
mining. Int. J. Syst. Sci. 37, 835–864 (2006)

28. González, A., Perez, R.: Selection of relevant features in a fuzzy genetic learning
algorithm. IEEE T. Syst. Man. Cy. B 31, 417–425 (2001)

29. Sánchez, L, Couse, I., Corrales, J.: Combining GP operators with SA search to
evolve fuzzy rule based classifiers. Inform. Sciences 136, 175–192 (2001)

30. Carvalho, D., Freitas, A.: A hybrid decision tree/genetic algorithm method for data
mining. Inform. Sciences 163, 13–35 (2004)

31. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization
algorithm. IEEE T. Evolut. Comput. 6, 321–332 (2002)

32. Cohen, W.: Fast effective rule induction. Proc. of the 12th International Conference
on Machine Learning, 1–10 (1995)

33. Quinlan, J.: C4.5: Programs for Machine Learning (1993)
34. Nauc, D.D.: Measuring interpretability in rule-based classification systems. In Proc.

of the IEEE International Conference on Fuzzy Systems, 196–201 (2002)
35. Luna, J.M., Romero, J.R., Ventura, S.: Design and behavior study of a grammar-

guided genetic programming algorithm for mining association rules. Knowl. Inf.
Syst. 32(1), 53–76 (2012)


