
On Designing Usable Policy Languages

for Declarative Trust Aggregation

Michael Huth and Jim Huan-Pu Kuo

Department of Computing, Imperial College London,
London, SW7 2AZ, United Kingdom
{m.huth,jimhkuo}@imperial.ac.uk

Abstract. We argue that there will be an increasing future need for the
design and implementation of declarative languages that can aggregate
trust evidence and therefore inform the decision making of IT systems
at run-time. We first present requirements for such languages. Then we
discuss an instance of such a language, Peal+, which extends an early pro-
totype Peal that was researched by others in collaboration with us. Next,
we formulate the intuitive semantics of Peal+, present a simple use case
of it, and evaluate to what extent Peal+ meets our formulated require-
ments. In this evaluation, particular attention is given to the usability
aspects of declarative languages that mean to aggregate trust evidence.

1 Introduction

There is little doubt that the advances in computing and information technology
are transforming the manner in which we conduct our business and lead our
personal lives. The use of small devices such as tablets and smart phones, the
rapid pace with which such technologies evolve, and the increased reach of these
technologies – to name smart meters for electric power supply – are prominent
examples of this.

One consequence of this is that ever more things have programmable interfaces
to which other things and processes may connect. In this Internet of Things, de-
signers, programmers, and users alike need to be able to formulate constraints on
the interactions across such interfaces that adequately reflect implicit trust as-
sumptions, risk appetite, and other intentions. We think that trust management
will play a key role in the articulation of such interaction constraints. Let us first
state what we mean by the term “trust” in this paper. We say that an agent A (a
program, a user, a system, etc.) trusts another agent B for a planned interaction
I with B, when agent A has collected and inspected evidence that leads agent
A to believe that engaging in the interaction I with B is worth taking any risk
reflected in the studied evidence. This asymmetric view of trust can be made
symmetric by letting agent B perform a similar inspection and decision process
regarding the interaction I with agent A – typically based on evidence pertinent
to agent B. If we think of the symmetric view as a logical and of the asymmetric
view (a trust-mediated interaction would only take place if both agents agree to
it), we can focus on the asymmetric view subsequently.

T. Tryfonas and I. Askoxylakis (Eds.): HAS 2014, LNCS 8533, pp. 45–56, 2014.
c© Springer International Publishing Switzerland 2014

46 M. Huth and J.H.-P. Kuo

In this paper, we investigate how declarative languages can help with for-
malizing the process of collecting and studying indicators of trust in context-
dependent interactions with other agents. We posit that such languages will be
increasingly needed, and formulate requirements that they should satisfy. For
sake of illustration, we will study an extension of a trust-aggregation language
that we have designed with others [8,2,7,9] and assess its suitability against the
requirements we will formulate further below. This will in part make use of a
toy example written in that language. The paper concludes by identifying future
work for the design of more usable trust aggregation languages.

2 Declarative Trust Aggregation through Policies

We refer to trust aggregation as a process in which agent A first collects ob-
servable indicators of trust in an interaction I with agent B, and then system-
atically combines such indicators to more compact or abstract expressions that
can directly inform the decision making of agent A (e.g. whether or not to com-
mit to interaction I with agent B). Note that observable indicators may also
be estimates, for example, the estimated uncertainty in the computed reputa-
tion of an agent. Such indicators may themselves be talking about perceived
trust, reputation scores, risk levels, or about things that influence trust per-
ceptions indirectly – for example the financial risk to agent A in interaction
I with agent B. We note that existing approaches to computing trust or rep-
utation scores (including those that have only binary scores as in “trust” or
“don’t trust”) acknowledge that such computations benefit from incorporating
context-dependent information in the aggregation of trust evidence. For exam-
ple, reputation systems for online trading sites that base reputation scores on
the number of successful past interactions without taking into account the mon-
etary values of these transactions are subject to active attacks. Such attacks can
indeed be prevented or mitigated against by making reputation scores dependent
on transaction values as well – see for example the nice discussion in [11].

We posit that the future Internet of Things will have an increased need for
using such trust aggregations at many interfaces, and that this creates the need
for a sort of trust calculus as the basis of computing the perceived trust in inter-
actions across interfaces, which can then be enforced at run-time. No doubt will
this lead to many dialects or variants of such a calculus. But there is evolutionary
pressure to standardize such aggregation languages in order to get portability
across platforms and technologies. Additionally, the creation of a more generic
trust calculus will facilitate the development of robust analyses of aggregations
formulated in such a calculus. It will also allow the decoupling of executable and
analyzable such core languages from user-facing and domain-specific languages
for expressing trust aggregation. With such a separation of concerns, one would
for example only have to compile user-facing domain-specific languages into a
(not user-facing) core language that can be implemented in systems and for
which the desired analyses can be performed.

On Designing Usable Policy Languages for Declarative Trust Aggregation 47

Such a core trust calculus has to be able to collect indicators of trust that
have different semantic types, for example, the location of an agent, the past
interaction history with agent B, and the nature of the intended next interaction
with B. This need adds cognitive complexity to the aggregation of such indica-
tors. We believe that such cognitive complexity cannot be eliminated by formal
foundations of a core calculus and its aggregation mechanisms, even though such
foundations will have many other benefits discussed further below. For example,
the interaction of indicators of trust with indicators of distrust may be non-
obvious or unintuitive and so harder to understand. In mathematical terms, the
introduction of distrust indicators moves from simpler semi-rings of values to
rings in which negative and positive information gets combined.

Many reputation systems and related approaches hardwire the aggregation of
indicators and its possible state-change semantics through mathematical formu-
las that express scoring functions. This allows for easy implementations and sup-
ports the formal analysis of the mathematical system being described. However,
we claim that future IT systems will require more expressive and more adaptable
mechanisms for specifying, implementing, and analyzing such evidence aggrega-
tion and state-transformation mechanisms. For example, the management of
trust and risk across different logical, physical or legal domains can no longer
rely on scoring functions that implicitly assume a closed system with observ-
able boundaries. There are also systems for which not enough prior information
might be available and yet some form of trust evidence is present and perhaps
the only basis for decision making. An example thereof are processes by which
parties of arms reduction treaties can confirm to each other that specific arms
have indeed been destroyed.

We propose to use policy languages to attain such declarative flexibility and
adaptability. Policy languages have already been used successfully in trust man-
agement (e.g. for public-key systems [1]) and access control (see e.g. [3]). Such
languages have often a means of composing simple rules into global policies,
something we feel to be desirable from a usability perspective.

3 Requirements for Declarative Trust Aggregation

We now describe requirements that we deem to be important for the design of
policy languages L for declarative trust aggregation:

Expressiveness: Such a language L needs to be able to declare aggregations
and state changes as they occur or are needed in a wide range of real systems,
at least up to an acceptable degree of abstraction.

Scalable analysis: Declarations made in such a language L should be subject
to formal analysis that aids in the validation of these declarations, and such
analyses should scale up to realistic declaration sizes.

Interface-facing: Such a language L should be designed so that it can interface
easily with other languages down-stream (by using those other languages) and

48 M. Huth and J.H.-P. Kuo

up-stream (by being used by other languages). Down-stream, we need to be able
to plug into L desired expressions from other languages that specify indicators
of trust, distrust, risk, etc.. Up-stream, we want to be able to take L expressions
that declare trust aggregation or state-changes based on such aggregation, and
plug them into other languages (e.g. as conditions) to be used for decision making
or further computation.

Usability: Declarations made in L should be easy to formulate, should support
the intuitions of a specifier, and should also have easily specifiable and intuitive
analyses used to validate such declarations. Equally, the feedback provided by
analyses should be easy to understand and be presented at the same cognitive
layer as the analyzed declarations. This may require that syntactic patterns of
language fragments of a core calculus be identified (so called embedded domain-
specific languages). Or it may require the development of application-specific
user-facing languages that have efficient and transparent translations into a core
language L. Language choices such as “embedded” versus “compiled” will typi-
cally be made based on external factors and will therefore vary.

4 A Core Language for Trust Aggregation

We now sketch a language Peal+ that may serve as a core calculus for trust ag-
gregation. This language supports aggregation but not yet declarations of state
changes based on computed trust. We leave such aspects to future work. The
language Peal+ is depicted in Figure 1. Its most abstract expressions are condi-
tions cond, which are Boolean combinations of two sorts of formulas: predicates q
as indicators of trust, risk, value, etc., and inequalities pSet1 ≤ pSet2 which de-
clare that the score computed by a policy set pSet1 is not larger than the score
computed by policy set pSet2. Note that we can derive language expressions
cond || cond (for disjunction) and pSet < pSet (for strict inequality of scores) as
syntactic sugar of Peal+ since the latter contains the dual constructors conjunc-
tion for conditions (&&) and less-than-or-equal comparison for policy sets (≤),
as well as the negation operator for conditions (¬).

In language Peal+, the language of predicates q itself is left unspecified. This
omission is intentional as this is how we want to ensure that we can interface
with down-stream languages that may express such indicators in whichever way.
The decision to use Boolean variables means we require that interfaces to such
other languages render their trust indicators in Boolean form. Examples of such
a down-stream languages would be first-order or higher-order logic, where pred-
icates q would be defined or bound to formulas of such logics.

In Peal+, predicates are used to build rules, rules are used to build policies,
and policies are used to build policy sets. Finally, predicates and policy sets
are used to build conditions. These conditions can then be used as stand-alone
expressions to support decision making, or they may serve as Boolean expressions
in up-stream languages. A condition such as 0.5 < pSet might model whether or
not there is sufficient trust in committing to a risky interaction, where 0.5 acts

On Designing Usable Policy Languages for Declarative Trust Aggregation 49

op ::= min | max | + | ∗
raw score ::= real const | real var | real const ∗ real var

score ::= raw score | raw score [real const , real const]

rule ::= if (cond) score

pol ::= op (rule∗) default score

pSet ::= score | pol | op (pSet, pSet)

cond ::= q | pSet ≤ pSet | ¬cond | cond&& cond

Fig. 1. Syntax of Peal+ where q ranges over some language of predicates, and the
constants and variables in score range over real numbers (potentially restricted by
domains or analysis methods)

as a strict trust threshold and pSet captures the aggregation of trust evidence.
Note that the language Peal+ does not explicitly assign such conditions to specific
agents. Such designations would indeed be expected to happen in an up-stream
language that were to use such conditions to regulate and enforce trust-mediated
interactions in a multi-agent system. Note further that conditions cond might
also appeal to agents and their states through predicates q that have meaning in
a suitable logic, and so down-stream languages may also reflect agency if needed.

Policy sets of Peal+ are either atomic, in which case they are scores or policies,
or they are composite objects, in which case they are recursively composed from
policy sets through composition operators listed under syntactic clause op. The
composition choices for op supported in core are minimum, maximum, addition
and multiplication of scores – but one can well image extensions of this.

Let us now discuss the two forms of atomic policy sets, beginning with scores.
A score is defined to be either a raw score or a raw score annotated with a real
interval. A raw score is either a real constant, a real variable, or the product of
a real constant with a real variable. For example 0.56, y2, and −1.4 ∗ z could all
be declared as raw scores and so as scores as well. The annotation of an interval
allows us to write expressions such as 0.456 ∗ x [−0.1, 0.2] as a score. The role of
the interval [−0.1, 0.2] is to express non-deterministic uncertainty in the value
of 0.456 ∗ x. The intuition is that, no matter what value x has, the value of the
score will be in the set {0.456 ∗ x + u | −0.1 ≤ u ≤ 0.2}. One advantage of
having such an annotation is that it allows the specifier to make uncertainty in
the true value of the score explicit (said value may be a best-effort estimate of a
probability, for example). And the analysis of conditions cond written in Peal+

can then reflect such non-deterministic choices, and may so validate conditions
so that they are robust under any sensitivity changes within the ranges of these
declared intervals.

It remains to explain the syntax for declaring policies and rules. A rule
if (cond) score evaluates a condition cond. If the latter is true, the rule eval-
uates to the value of score; otherwise, the rule does not evaluate to anything. A
policy consists of zero or more rules, a composition operator for rules (ranging

50 M. Huth and J.H.-P. Kuo

over the same operators as for composition of policy sets), and the specification
of a default score:

pi = op (if (c1 s1) . . . if (cn sn)) default s or pi = op () default s (1)

The intuitive semantics of a policy pi as in (1) in Peal+ is then as follows.
First, determine which rules in policy pi have a true condition ci: this is the set
X = {si | ci true and occurs in pi}. Second, if X is non-empty, return op(X);
otherwise, return default score s as meaning of pi. This semantics requires that
we can reliably determine the truth values of all predicates within a policy.

The language Peal+ is an extension of the language Peal which was developed
in the papers [8,2,7,9]. Let us therefore quickly state what new features Peal+

contains over the version of Peal described in [7,9]. In Peal+, composition op-
erators are now unified in that they are the same for policies and policy sets,
meaning that we now can also combine policy sets with addition and multipli-
cation. Scores in Peal+ may not just be raw scores but may be annotated with
a constant real-valued interval, and scores can now also be casted into policy
sets. Finally, the condition expressions score < pSet and pSet ≤ score of Peal
are generalized in Peal+ to pSet1 < pSet2 and pSet1 ≤ pSet2. The justification
for such extensions from Peal to Peal+ is that it allows for more expressive score
calculations, for the modelling of score uncertainty, but at the same time won’t
complicate much the symbolic generation of analysis code in the Z3 SMT solver
as described for Peal in detail in [7,9].

Let us see how Peal+ can be used to plug into up-stream languages. For
example, an expression of form 0.9 < min(pSet1, pSet2) is a Boolean condition
in which 0.9 acts as a strict threshold for the score of a declared policy set,
where the min composition means that the scores of both policy sets pSet1
and pSet2 have to be above 0.9. This condition may aggregate evidence for
trusting a request to some resource and were we combine two policy sets in a
conservative manner as both policy sets have to attain sufficient evidence for
the threshold constraint 0.9 < x. If we plug this condition into an access-control
language that supports rules such as grant if (cond) else deny, then using
0.9 < min(pSet1, pSet2) in place of cond articulates the circumstances under
which access would be granted. Note that conditions in Peal+ are agnostic as to
whether or not they support positive (as in this example) or negative decisions.
This depends on the up-stream context into which such conditions are placed,
and this is a potential usability issues.

5 Usability Issues of Peal+

We provide a small example of condition declarations in the language Peal+. The
example captures a fictional setting in which a car rental company might assess
the trust it places in US rental agreements within a variety of contexts, and it
shows that trust declarations may have ethical or legal dimensions as well.

Example 1. The policies, policy sets, and conditions for this example are de-
picted in Figure 2, using concrete syntax very close to that of the tool PEALT
that implements language Peal [9]. These declarations specify four policies:

On Designing Usable Policy Languages for Declarative Trust Aggregation 51

– Policy b1 classifies the type of car to be rented, and associates with it a
monetary value, where the default value is higher than that of a compact
car. The composition operator is maximum here.

– Policy b2 classifies the driver who wishes to rent the car by assigning a trust
score based on the country of origin of the driver’s license. US Licences are
trusted more than European ones, and European ones are trusted somewhat
more than UK ones (as Europeans and Americans drive on the same side of
the road). Licences from other parts of the world are trusted less and there
is uncertainty about their trustworthiness coded in the interval [−0.1, 0.1].
Drivers with no licence are not trusted at all (default of 0). The composition
operator is here minimum (seeking the least trust).

– Policy b3 classifies the risk of the car rental in terms of the type of intended
car usage: there is the highest risk if some off road driving is planned, followed
by city driving as the next highest risk, whereas long distance driving has
the lowest risk (lower than the default risk of 0.3). A mixed usage of long
distance and city driving has an intermediate risk associated with it. The
composition operator is maximum (going for the highest risk).

– Finally, policy b4 accumulates evidence for trusting to rent out the car, based
on evidence aggregated from driver information: a trust score that is linear
in the number x of years driven accident-free within the past years from
now is one source, as is the indication of being able to speak English (e.g. so
that road signs can be read and understood), and the fact that the driver is
female. Note that negative trust evidence is included when the driver would
travel alone. The composition operator is addition here, accumulating trust
and distrust.

These policies are composed into policy sets in condition c1, where we take
the asset value of the case in b1 and multiply this with the perceived risk – which
is the trust score of b2 “inverted” to 1− b2 in order to capture such risk:

– Condition c0 limits the credit for number of years driven without accidents
to 10 and forces x to be non-negative.

– Condition c1 stipulates that this weighted risk be no larger than 50, 000.
– Condition c2, on the other hand, specifies that the accumulative trust evi-

dence collected about the driver be strictly larger than 0.4.
– The next three conditions express, using propositional connectives, that the

events listed in the three respective policies b1 up to b3 are mutually exclu-
sive (but not necessarily across such policies).

– Condition c5 captures a logical constraint (company policy), that no luxury
car is rented out if the intended usage includes some off road driving.

– Finally, the condition for trusting the rental arrangement (from the point of
view of the rental company) is expressed in condition cond, that specifies
that all seven conditions already discussed have to be met.

Let us now illustrate usability issues of trust aggregation languages, by ap-
pealing to the above example and its use of the language Peal+ when and where
appropriate. One concern is the intuitive meaning and appropriateness of com-
position operators op. In policy b1, for example, the operator is the maximum.

52 M. Huth and J.H.-P. Kuo

b1 = max ((isLuxuryCar) 150,000) (isSedan 60,000)

(isCompact 30,000)) default 50,000

b2 = min ((hasUSLicense 0.9) (hasUKLicense 0.6)

(hasEULicence 0.7) (hasOtherLicense 0.4 [-0.1,0.1]) default 0

b3 = max ((someOffRoadDriving 0.8) (OnlyCityUsage 0.4)

(onlyLongDistance 0.2) (mixedUsage 0.25)) default 0.3

b4 = + ((accidentFreeForYears 0.05*x) (speaksEnglish 0.05)

(travelsAlone -0.2) (femaleDriver 0.1)) default 0

c0 = (0 <= x <= 10)

c1 = (* b1 (+ b2 (-1))) <= 50,000

c2 = 0.4 < b4

c3 = "all events in b1 are mutually exclusive"

c4 = "all events in b2 are mutually exclusive"

c5 = "all events in b3 are mutually exclusive"

c6 = !isLuxuryCar || !someOffRoadDriving

cond = c0 && c1 && c2 && c3 && c4 && c5 && c6

Fig. 2. Declarations in Peal+ that specify criteria for a car rental company to trust
renting out cars in certain usage scenarios

This conveys a false sense of purpose for this composition, as condition c3 stip-
ulates that all events within that policy are mutually exclusive. So an operator
such as sole (which would return the score of the only true event or the default
score if no or more than one event were true) may seem more intuitive. In fact,
operator sole would also be usable for policy b2. Although it is interesting to
note that policy b1 uses maximum as it conservatively wants to estimate the
value of assets under risk, whereas policy b2 uses minimum as a conservative
estimate of a trust score.

Another potential problem with policy b1 is that the default score is not
smaller than all scores within the policy body. This means that the policy is not
monotone: all its events might be false, but when we then make more events true
by making just isCompact true, the score of the policy decreases. This might
be intended by the specifier but it could lead to “attacks” of these specifica-
tions by which conditions for trust could be made true by making some events
false. Similarly, one might hide attributes in attribute-based access control to
get unintended access. The presence of such attacks can be statically analyzed.
For example, for the attribute-based language PTaCL [3] a tool ATRAP was
developed in [6] that automatically searches for such attacks and – in their ab-
sence – constructs a formal proof of their absence.

Furthermore, language Peal+ does not contain types or similar annotations
that might indicate whether policies, policy sets or conditions intent to express
risk, trust, monetary values or any other modality. For example, we might expect
that risk and trust are inversely proportionate. Similarly, the language does
not say whether these modalities are specified with a pessimistic, optimistic,
averaging or some other cognitive stance.

On Designing Usable Policy Languages for Declarative Trust Aggregation 53

Language Peal+ also has a simple but implicit scoping: there are no syntactic
blocks that can rebind declared names of predicates, policies, etc. Such names
refer to the same entities in all declared conditions. We think that the introduc-
tion of local names and their static scoping would introduce unwanted cognitive
complexity to using Peal+. On the other hand, the language does not have a
direct means of defining condition names that contain parameter headers. For
example, condition c1 has policies b1 and b2 as parameters and so it would be
convenient to write c1(b1, b2) and to be able to replace formal parameters b1

and b2 with actual parameters in other condition expressions.
Another interesting usability issue is the fact that rules may contain com-

plex conditions cond and not just predicates q. This may mostly just be for
convenience so that predicates q can reflect their propositional logical struc-
ture explicitly in Peal+ as opposed to through an interface to a down-stream
language. But expressions cond used in rules may themselves talk about pol-
icy sets. This allows richer aggregation mechanisms, yet it also introduces an
apparent circularity: consider policy b1 = (if (c1) 0.3) default 0 and condition
c1 = 0.2 < max(b1, b2) for some policy b2. The meaning of b1 (its score) de-
pends on the meaning of c1 (a truth value), which in turn depends on the score
of b1. Fortunately, this is not a genuine circularity as it merely constrains the
possible truth values of c1 and scores of b1 in analyses. However, a user-facing
language may want to prevent or flag up such circularities as they are most likely
due to typos or reflect unintended consequences.

A general usability issue of languages such as Peal+ is how we aid specifiers
in validating that the conditions they express in these languages reflect the in-
tentions that they have in managing assets, risks, reputations, and trust. We
believe that specifiers should be able to subject conditions to a variety of auto-
mated analyses that can boost their confidence in that intentions have been met
in specified conditions. In [2] such analyses were proposed, and some of these
analyses were implemented in the tool PEALT [9] for the smaller language Peal.
For example, in PEALT one can ask whether a condition is always true or always
false – both would typically indicate that intentions are not met; one can ask
whether a condition of form score < pSet changes when score is changed by
a specified value; etc. These analyses are rendered as push-button technology
through automated translation of conditions and the desired analysis to code
for the SMT solver Z3, where the execution of that code performs that analysis
and gives feedback. We believe that this automated means of performing anal-
yses and getting their feedback is crucial for gaining acceptance for the use of
trust-aggregation languages in real systems.

6 Evaluation of Peal+ against Remaining Requirements

We now assess to what extent our language Peal+ meets the requirements we
formulated above, and how these requirements interact with usability issues. We
begin with Expressiveness. Language Peal+ is certainly very expressive in that
predicates q may provide plugs to very rich languages for providing the exact

54 M. Huth and J.H.-P. Kuo

meaning of such predicates. Conditions have intuitive structure: propositional
logic over the input language for predicates plus the comparison of policy sets.
A source of cognitive complexity is whether we understand a comparison to be
true in all scenarios or to be true in at least one scenario. For example, when
we write pSet1 ≤ pSet2 do we mean that the score of the first expression is
always no larger than that of the second expression or that is can be no larger?
Answering such questions depends on how such conditions are used in up-stream
languages (or even in Peal+ conditions). Again, analyses can be used to provide
needed sanity checks that intended usage of conditions matches their semantics.
Additionally, user-facing languages that compile into Peal+ could be designed in
which patterns and types make clear the intentional stances of policies and their
composition (e.g. whether a policy aggregates trust scores, asset values, etc.).
Use of such patterns would be expected to prevent a lot of misinterpretations
that would therefore not be flagged up in analyses and so reduce the number of
“condition refinement steps”.

The stratification of policy sets into rules, policies, and policy sets should help
with structuring more complex aggregation meachanisms. The structure of rules
seems intuitive enough, but one may object to its behavior when its condition is
false. For example, one might want a rule that says “if q, then 0.9 else 0.1” for
expressing trust, suggesting that q indicates trust whereas ¬q indicates distrust.
But this is not a good language primitive as not all trust indicators suggest
distrust in their absence. Moreover, we can build expressions such as the above
as a policy op (if (q) 0.9) default 0.1.

Let us discuss Scalable Analysis next. In [9], we showed experimentally
that language Peal allows analyses of fairly large conditions (with hundreds or
thousands of rules and policies) within seconds or minutes, where the marked
bottleneck is an extensive use of multiplication in policies. Given the specifics of
symbolic code generation for these analyses in the Z3 SMT solver, we anticipate
that similar scalability will be achievable for the richer language Peal+, and we
plan to investigate this in future work. A nice aspect of using back-ends such
as Z3 is that this approach will benefit from whatever future optimizations or
marked improvements will be made in SMT solving.

One important usability aspect of these analyses is that their output consists
of the description of a scenario (some true predicates, some false predicates, and
values of variables that support such truth values). We are currently developing
techniques for the independent verification of the correctness of such output. In
general, this is needed because the method of code generation for analysis may be
flawed or because the reasoning about real numbers in some back-end tool may
be imprecise. By correctness of computed output we mean that the reported
information is statically sufficient for explaining that the conditions supplied
as arguments to an analysis have the claimed truth values. Verification of this
claim involves the solution of 2-person games and fairly simple static analyses
of policy expressions. It would be interesting to investigate how this algorithmic
certification of correctness could be communicated to users in a form that goes
beyond “Independent verification of analysis outputs was successful” but renders

On Designing Usable Policy Languages for Declarative Trust Aggregation 55

the insights of this verification process in an abstract yet still more informative
form – by hiding some of the complexity of that verification process.

As for Interfacing, we think that the addition of parameterized headers
to Peal+ would help in defining clear interfaces to down-stream and up-stream
languages. In Peal+, we don’t explicitly manage name spaces across domains. But
existing naming convention could enforce globally unique names for predicates
and variables within Peal+. Also, Peal+ can use any down-stream language that
returns Booleans as predicates q; and Peal+ can plug into any up-stream language
that expects real values (for policy sets pSet) or Booleans (for conditions cond).

7 Related Work

We refer to the extant literature, see for example [13] and [4], for a more thorough
discussion of trust mechanisms and their role in general system design. Empirical
work done by social scientists in the general space of trust perceptions and its
support in decision making is an important source of information for the design
of user-facing trust aggregation languages.

In [5], it was studied how software engineers evaluate the trustworthiness
of software components and how they decide to use such components in their
software development. It was shown that these technical people used the same
socio-cognitive processes as non-technical ones and also employ a “leap of faith”
in which their trust decision may not reflect their trust evaluation. Interestingly,
the decision to trust was negatively impacted by contact with component devel-
opers (since such contact was often the result of problems in said component).

The book chapter [14] recalls that a lot of research focussed on trust symbols
(e.g. on web sites) that may influence the trust perceptions of users but that the
effectiveness of such trust signals cannot be empirically validated [10]. In fact,
technical systems need to consider trustworthiness of services already at the de-
sign phase of such systems. They also stress the need to move from mere trust
symbols to trust symptons that can form the basis of trust assessment heuristics.
In that context, we point out that the credit card industry has a history of using
and modifying statistics that form the basis of so called score cards with which
the creditworthiness of an applicant is evaluated against a history of past clients
and their attributes and performance. For example, [12] studies how one might
account for “population drift” in consumer credit classification – something of
great importance in times of high migration and fast societal changes. There-
fore, there could be of interest to investigate whether that research in statistics
may offer insights in the design of trust assessment heuristics for executable IT
systems.

Acknowledgements: We are grateful that this work was supported by funding
from Intel R© Corporation within its Trust Evidence research project.

56 M. Huth and J.H.-P. Kuo

References

1. Blaze, M., Feigenbaum, J., Keromytis, A.D.: KeyNote: Trust management for
public-key infrastructures. In: Christianson, B., Crispo, B., Harbison, W.S., Roe,
M. (eds.) Security Protocols 1998. LNCS, vol. 1550, pp. 59–63. Springer, Heidelberg
(1999)

2. Crampton, J., Huth, M., Morisset, C.: Policy-based access control from numeri-
cal evidence. Technical Report 2013/6, Imperial College London, Department of
Computing (October 2013) ISSN 1469-4166 (Print)

3. Crampton, J., Morisset, C.: PTaCL: A language for attribute-based access control
in open systems. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and
Trust. LNCS, vol. 7215, pp. 390–409. Springer, Heidelberg (2012)

4. Flechais, I., Riegelsberger, J., Sasse, M.A.: Divide and conquer: the role of trust
and assurance in the design of secure socio-technical systems. In: Proceedings of
the 2005 Workshop on New security Paradigms, NSPW 2005, pp. 33–41. ACM,
New York (2005)

5. Fugard, A.J.B., Beck, E., Gärtner, M.: HowWill Software Engineers of the Internet
of Things Reason about Trust? In: Wichert, R., Van Laerhoven, K., Gelissen, J.
(eds.) AmI 2011. CCIS, vol. 277, pp. 274–279. Springer, Heidelberg (2012)

6. Griesmayer, A., Morisset, C.: Automated certification of authorisation policy re-
sistance. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 574–591. Springer, Heidelberg (2013)

7. Huth, M., Kuo, J.H.-P.: PEALT: A reasoning tool for numerical aggregation of
trust evidence. Technical Report 2013/7, Imperial College London, Department of
Computing (2013) ISSN 1469-4166 (Print)

8. Huth, M., Kuo, J.H.-P.: Towards verifiable trust management for software exe-
cution - (extended abstract). In: Huth, M., Asokan, N., Čapkun, S., Flechais, I.,
Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 275–276. Springer, Hei-
delberg (2013)

9. Huth, M., Kuo, J.H.-P.: PEALT: An automated reasoning tool for numerical ag-
gregation of trust evidence. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014
(ETAPS). LNCS, vol. 8413, pp. 109–123. Springer, Heidelberg (2014)

10. Kirlappos, I., Sasse, M.A., Harvey, N.: Why trust seals don’t work: A study of user
perceptions and behavior. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volka-
mer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 308–324.
Springer, Heidelberg (2012)

11. Mui, L.: Computational Models of Trust and Reputation: Agents, Evolutionary
Games, and Social Networks. PhD thesis. MIT (2002)

12. Pavlidis, N.G., Tasoulis, D.K., Adams, N.M., Hand, D.J.: Adaptive consumer
credit classification. Journal of the Operational Research Society 63(12), 1645–
1654 (2012)

13. Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The mechanics of trust: A frame-
work for research and design. Int. J. Hum.-Comput. Stud. 62(3), 381–422 (2005)

14. Sasse, A., Kirlappos, I.: Trust, Computing, and Society, chapter Design for trusted
and truthworthy services: why we must do better. Cambridge University Press (in
press, 2014)

	On Designing Usable Policy Languages
for Declarative Trust Aggregation

	1 Introduction
	2 Declarative Trust Aggregation through Policies
	3 Requirements for Declarative Trust Aggregation
	4 A Core Language for Trust Aggregation
	5 Usability Issues of Peal+

	6 Evaluation of Peal+ against Remaining Requirements

	7 Related Work
	References

