The Common Implementation Framework
as Service — Towards Novel Applications

for Streamlined Presentation of 3D Content
on the Web

Andreas Aderhold!, Katarzyna Wilkosinska!, Massimiliano Corsini?,

Yvonne Jung®, Holger Graf*, and Arjan Kuijper*

! University of Applied Sciences Darmstadt, Germany
aha@dockwerk.com, kasia@wilkosinska.com
2 ISTI CNR, Pisa, Italy
Massimiliano.Corsini@isti.cnr.it
3 University of Applied Sciences Fulda, Germany
Yvonne.Jung@informatik.hs-fulda.de
4 Fraunhofer IGD, Darmstadt, Germany
{hgraf,akuijper}@igd.fraunhofer.de

Abstract. We solve a standing issue of the recently published Com-
mon Implementation Framework (CIF) for Online Virtual Museums:
programmatic access to the transcoding, optimization and template ren-
dering infrastructure of the CIF. We propose a method that enables
researchers and developers to build novel systems on top of the CIF in-
frastructure beyond its current Cultural Heritage workflow. Therefore,
we introduce a way to programmatically access the powerful backend of
the CIF through a universal access layer, addressable by standards like
HTTP and the JSON Data Interchange Format. In order to demonstrate
our approach, we present two different use cases in which the CIF pipeline
is utilized as a service through the proposed resource-based access layer:
a native mobile iOS application for browsing 3D model repositories re-
alizing just-in-time optimization of large models, and a MeshLab plugin
to asynchronously convert and prepare a model for the Web.

Keywords: Web 3D, Virtual Museums, Cultural Heritage, Content Au-
thoring, Distributed Systems.

1 Introduction

Today, the majority of web applications remain predominantly 2-dimensional.
However, embedding 3D graphics is increasingly adopted by many services like
geological visualization solutions (cp. e.g. [4]) or displayal of archeological arti-
facts [3]. In the Cultural Heritage (CH) domain 3D technology has long gained
a strong foothold into the work of researchers and museums. Artifacts need to
be presented on multi-display virtual museum installations as well as on a broad
range of different devices to support researchers in this ambit in different ways

A. Marcus (Ed.): DUXU 2014, Part IT, LNCS 8518, pp. 3-14, 2014.
© Springer International Publishing Switzerland 2014

4 A. Aderhold et al.

[26]. Traditionally, these systems where developed with great expenses on spe-
cialized, often closed-source, platforms.

The introduction of WebGL [21] paved the way for real-time 3D graphics in
the common web browser. It subsequently has become a mainstream technol-
ogy deployed on a wide variety of desktop and mobile devices. However, within
the CH domain, 3D models usually stem from scanner-acquired data at very
high resolutions and need to be optimized aggressively to be useful on devices
with limited resources like mobile phones, tablets or desktops with integrated
graphic chips, esp. for connections with low bandwidth. Furthermore, to present
and interactively explore 3D models in a web browser, the optimized models
need to be embedded in a custom HTML5 application or web site, which can
not be generalized. The spectrum of the presentation format can range from a
simple website to a full virtual environment like an interactive exploration of
an archeological excavation site or the presentation of a virtual reconstruction
hypothesis.

Therefore, Wilkosinska et al. [29] recently proposed a system called the Com-
mon Implementation Framework for Ounline Virtual Museums (CIF), which
presents a method to convert and optimize 3D heritage models into a form
suitable to be displayed and interactively explored in a standards-based cus-
tomizable web application. While the CIF is tailored to the CH domain, its
transcoding and optimization backend can be utilized much more broadly and
without the limitations imposed by a web front-end and a process specific to the
Cultural Heritage workflow.

In this paper we outline how researchers and developers can build novel sys-
tems on top of the CIF infrastructure without being tied to a CH workflow or
the web interface provided by the original CIF. We introduce a way to program-
matically access the powerful optimization/transcoding and delivery backend of
the CIF through a universal middleware access layer addressable by standard
protocols and formats like Hypertext Transfer Protocol (HTTP) [10] and the
JSON Data Interchange Format (JSON) [9]. To display the usefulness of our
approach, we present two different cases of using the CIF pipeline as a service
through the proposed access layer.

First, we present an iOS [2] application that allows accessing a remote repos-
itory of 3D models. In order to interactively explore 3D models on the mobile
device, an optimized version of the model is generated by the CIF pipeline, and
transmitted to the mobile outlet for presentation and storage. Due to the CIF
and its API no large datasets need to be exchanged between the handheld de-
vice and the repository. Second, we extend the well-known MeshLab [7] desktop
application by a “web export” plugin. This plugin employs the CIF API to send
a 3D model to the CIF, which generates an HTML5 application presentation
package according to some pre-defined templates. As a result, the users of Mesh-
Lab can easily deploy his/her work on a web site, without knowledge of WebGL
or other web technologies.

Towards Novel Applications for Presentation of 3D Content on the Web 5

2 Related Work

2.1 Foundation Technologies

WebGL is a gateway technology enabling developers to deploy 3D graphics
through the use of a common web browser. Most major browser vendors adopted
the WebGL standard early on. Recently, also the last remaining major browser
without WebGL support, Microsoft Internet Explorer, gained this ability with
version 11 [22]. However, WebGL is a low-level API to the GPU and not very
approachable for typical web developers who are used to frontend technologies
like HTML, CSS and DOM-scripting. Therefore, JavaScript libraries have been
emerging, which aim to close the gap between front-end developer and computer
graphics expert. For instance, one such library is X3DOM [5], a polyfill, which
allows for declarative embedding of 3D graphics based on the open ISO standard
X3D [28] into HTML documents. Over the past year substantial performance
improvements of X3DOM enable progressive streaming of heavily optimized bi-
nary data to the client to further enhance the usability and maximize resource
usage of the library [19].

Rendering a 3D scene on a web site constitutes only one challenge in bring-
ing 3D into the browser. Within the CH domain, 3D models usually stem from
scanner acquired data at very high resolutions, consisting of an abundance of
vertices. Those large 3D models are non-trivial to manage, especially when con-
straints like memory, network bandwidth, storage capabilities and processing
power are key factors in the successful adoption of an application. Therefore the
raw models need to be optimized massively to be useful on devices with the
limited resources mobile phones, tablets or commodity desktops with integrated
graphics provide. To that end we further developed the aopt transcoder tool for
optimizing 3D models with special focus on scene-graph data [16]. We use aopt,
which is part of the InstantReality framework [14] that utilizes the X3D stan-
dard [28] as application description language, to convert the 3D scene into an
HTML5 representation suitable for the presentation in X3DOM. The tool also
allows to optimize large models for progressive loading through X3DOM (cf. [6]
and [17,19]).

To optimize a model even further, the software package MeshLab is used.
It allows for more advanced healing and filtering processes like removing faces
from non-manifolds or edge collapse mesh decimation[7]. Within the CIF pipeline
running the model through MeshLab is an optional pre-processing step. To this
end we are using a service instance of MeshLab (called MeshLabServer). For a
detailed overview on how the CIF pipline is orchestrated cp. [29].

2.2 State of the CIF

Since the introduction of the CIF prototype, further reserach has built upon
the presented framework. Especially Aderhold et al. [1] described more specifi-
cally how the transcoding and optimization backend of this system can be scaled
through the use of distributed processing. Moreover, the system has been im-
proved for robustness and has been in productive use for over a year now. The

6 A. Aderhold et al.

originally presented stack (cp. [29], Figure 2) was slightly modernized to a pro-
duction ready version. For example, the Apache/mod wsgi combination has been
replaced with an nginx [25] and Chausette [30] setup managed by the Circus [23]
socket and process manager. An output bundle for the CAD domain has been
added as well as additional template related features and complete customiz-
ability of the pipeline behavior, through the use of a template preset system, is
also work in progress. Finally, in gathering best practices for CH workflows, a
case study has been provided by Baldassari et al. [20] by example of the online
museum of “Villa Di Livia”.

3 Resource-Oriented Access

While the CIF allows for easy transcoding and optimization of 3D models for
Cultural Heritage applications, it is inherently tied to the workflow used by
that domain. With the proposed system it is not readily possible to integrate
the transcoding, optimization and templating into other applications, like batch
processing scripts, native mobile applications or even yet unknown scenarios like
for example an online furniture shop, where the user can customize a living room
suite or cupboard and interactively try out the drawers etc.

In essence, the basic steps and operations performed to transform a model
into a Web usable form are generic by design. Domain-specific behavior can be
implemented through the use of highly customized output templates. In order
to access the fundamental technologies underpinning the CIF, we propose a
generic way to access the CIF subsystems by means of a standards-based API
to facilitate the use of the CIF a service.

As more and more of the web experience moves into the browser, enabling
access to applications and data through asynchronous HTTP calls is increasingly
important. Therefore, we decided to extend the CIF with a resource-based inter-
face. By exposing a middleware layer through a network-based service, the entire
CIF pipeline, or only parts of it, can be accessed by any 3rd party application
using a fixed set of API instructions.

This service endpoint can be accessed utilizing the standardized HTTP [10]
protocol combined with the JSON [9] data exchange format. A resource-based
architecture inspired by Fielding [12] is employed to make full use of the HTTP
protocol as well as provide a sensible future aware and easy to understand im-
plementation.

Through this API complete control of the individual steps in the processing
pipeline can be offered. In contrast to other HTTP based protocols like SOAP,
using elements characteristic to REST style architectures allows us to fully ex-
ploit the potential of HTTP. In SOAP for example, mainly the HTTP POST
verb is used and return status codes are largely ignored. Additionally by im-
plementing a concise JSON-based request/response content, in contrast to the
verbose XML messages used in SOAP, we minimize the amount of data to be
transferred over the network. This part is especially important for mobile devices
which often have a limited network bandwidth capacity and/or throughput.

Towards Novel Applications for Presentation of 3D Content on the Web 7

3.1 Entities, Resources and Operations

To use the CIF through a generic API a new vocabulary needs to be derived to
address resources within the system. What was formerly handled by an HTML
web interface with an implicit narrative in the domain language of the CH do-
main, now needs a more generic exposition to be useful in other domains. There-
fore, the following entities in the system are defined:

Assets are files processed by the pipeline, for example model files, metadata,
templates, textures, images, etc.

Application Bundles define how the transcoded and optimized model(s) will
be delivered. A bundle consists of one or more “templates”, images,
JavaScript, etc. that form a blueprint HTML application. Additionally, a
bundle can contain specific settings, which allows for very fine grained and so-
phisticated configuration of the pipeline behavior. Those two powerful mech-
anisms allow creating highly domain specific application bundles that range
from simple catalog style applications to whole virtual environments like an
interactive virtual museum.

Buckets represent a container for a single asset or a collection of assets. In the
simplest form this container represents a directory on a disk containing a set
of files. However, there are no conceptual limitations of where and how the
contents of a bucket are stored. For example it could also be a database or
bigdata file system.

Jobs are asynchronously executing sets of operations triggered with a specific
payload and input/output options. Usually the input of a job consists of a
URI pointing to a bucket or a single web resource. The output of job can be
a URI to a bucket or other web resource.

Tasks are small, side-effect free, independent computing units which perform a
single specific function, for example transcode a model or unzip compressed
assets. Tasks are triggered during the lifecycle of a job. Tasks can also start
subtasks which can run in parallel or block the parent task until completed.
Tasks run distributed and can be spread over multiple machines to expedite
processing (cp. [1]).

Payloads represent sets of assets to be processed by the pipeline. Usually this is
the content of a bucket, identified by a URI pointing to the bucket container.
It could also be a URL pointing to a single resource on the Web, for example.

Furthermore we distinguish between collections and items — both of which
can represent a resource. A single item is usually part of a collection. However,
there is no artificial limit on how nesting can occur. A specific task item for
instance can be part of a tasks collection. Or a single model file (item) is part
of a bucket (collection). On each resource different operations can be performed
like retrieve, create, delete, update, status etc.

8 A. Aderhold et al.

3.2 HTTP and JSON

For the CIF, we decided to address resources through the well understood HTTP
protocol. Each resource is addressed by a unique URI (Uniform Resource Iden-
tifier) combined with an HTTP verb detailing the required operation to be per-
formed on the resource. Optionally an HTTP body containing JSON data is
provided with requests that need to modify a resource. Using HTTP verbs, the
following CRUD operations can be performed:

GET Retrieve a resource (e.g., GET /tasks or GET /tasks/4711)
POST Create a new resource within a collection (POST /buckets)
PUT Update an existing resource (PUT /buckets/123/herkules.ply)
DELETE Remove a resource (DELETE /buckets/123/herkules.ply)

The next example illustrates the use of our proposed API through HTTP
requests. We demonstrate a typical workflow to obtain a fully optimized model,
embedded in an HTML application, by providing a locally stored large model.
To illustrate the working of the API on the lowest level, we make use of the cURL
[27] utility, a command-line HTTP client, which can be also be used in batch
processing scripts. Additionally, Figure 1 outlines the entire API session.

Finished Download the output 4

at http://pipeline.v-must.net/download/xyz.zip 1
i

i

I Y- R e I TS

i i i i

I i I I

i i i i

i i i

I Here is herkules.ply, please store it in a bucket I I

i I i

i i i

I Create bucket I I

! 471 and store ! :

i herkules.ply H i

i i i

| Your data is stored in bucket with ID 4711 i i

| i i
o =i under filename herkulesply __________] L H H

] I | |

i i i i

] 1 Start Job] Orchestrate Tasks 1

T

| Startanew processing job, the input is bucket 4711 m
; and model herkules.ply e

! s

] h

] g
I e
i a

i Your job is running with ID abc123 P

i

e et e i et P

| i t

i i -
| - ! Status? |

! What's the status if job with ID abc123 _1;_
i

i Processin u
I <- - - - Frocessh -4 n

i i d
! ot Status? |

' e

i L
i i

[I

i i

i i

I i

i i

i i

| What's the status if job with ID abci23 All Tasks done
PSRNt I,

-~ ————— e ———---Dbone _______ L

1

1

1

I

1

Fig. 1. Sequence of a typical API session to convert a 3D model to a representation
suitable for web display

First a large model stored locally needs to be uploaded to a bucket:

$ curl -X POST
-H "X-Filename:herkules.ply"
-H "Content-Type: application/octet-stream"
--data-binary @fixtures/herkules.ply

Towards Novel Applications for Presentation of 3D Content on the Web 9

http://pipeline.v-must.net/api/vl/buckets

Response:
HTTP/1.0 201 CREATED
Content-Type: application/json

"bucket_id": "4711",
"filename": "herkules.ply",
"message": "Bucket and file created."

}

The response contains a bucket ID, 4711 for sake of this example, as well as
a file name. We retain this information and use it to start processing of the file
just uploaded:

$ curl -X POST
-H "Content-Type: application/json"
-d ’{"payload":"bucket://4711","payload_filename":"herkules.ply"}’
http://pipeline.v-must.net/api/v1/jobs

Response:
HTTP/1.0 201 CREATED
Content-Type: application/json

{
"message": "Task added and started",
"task_id": "abc123"
"job_url": "http://pipeline.v-must.net/api/v1/jobs/abc123",
"progress_url": "http://pipeline.v-must.net/api/v1l/stream/abc123/"
}

The response contains, amongst other data, a job url field. This URL can
subsequently be used to poll the server for status information about the conver-
sion process.

$ curl -X GET http://pipeline.v-must.net/api/v1/jobs/abc123
HTTP/1.1 102 PROCESSING

in case of success:
HTTP/1.0 200 OK
Content-Type: application/json

"state": "SUCCESS"

"message": "Conversion Ready.",

"download_url": "http://pipeline.v-must.net/download/abc123/abc123.zip",
"preview_url": "http://pipeline.v-must.net/preview/abc123/index.html"

As soon as the conversion finished, the response contains JSON data with
download and preview links, which can be used to display the web page in a
browser or download the whole HTML application in a single archive.

For an exploded technical overview of the HTTP calls involved in this work-
flow, please refer to [15].

4 Use Cases

4.1 Mobile 3D Repository Browser

Cultural Heritage repositories are an important tool to help historians and re-
searchers in their work. For example Doerr et al. [8] describes the design and
implementation of such a repository for large CH models, and Koller at al. [18]

10 A. Aderhold et al.

recognizes the need for interoperability of large CH archives, however does not
specify details on how this challenge could be met. Using mobile devices that
connect to CH repositories provide great potential for researchers and historians.
A device like a tablet computer could be used for efficient communication, on-site
exploration, augmented reality applications, and much more. Commonly, within
a 3D model archive a large number of big models are stored for preservation.
Exploring or even annotating, modifying or storing these models on a mobile
device over the internet is currently not feasible. Large models take a long time
to download and potentially require a massive amount of storage space a mobile
device can not provide.

, CIF Server
®
Retrieve model and
process

Repository server

Poll CIF frequently to
check if optimized
model is available
Get list

of models Instruct CIF to creat

a device optimized
3D version

When ready, retrieve
optimized model

Choose a model to Request a optimized 3D
show details version of the model

When 3D model is ready... ..show and explore

Fig. 2. Basic operation of the repository browser application. A a list of models and
metadata is retrieved from a 3D repository (1). Details are shown in a separate view
and a device optimized version can be requested through the CIF API (2). The CIF
servers retrieve the requested model from the remote location and start to create an
optimized version (3). The mobile device is polling the CIF servers to determine if the
conversion process has finished (4). Once the model is ready, it is retrieved (5) and
displayed to be explored on the mobile device.

To help overcoming those limitations, we also created a prototypical mobile
repository browser application, which utilizes the pipeline API for just-in-time
transcoding and optimization of remotely stored models. For optimal perfor-
mance, our 105 application makes use of a pipeline API feature which allows to
convert a model stored on another server accessible by the pipeline cluster (i.e.,
the 3D model archive). In order to trigger the conversion of a remotely stored
model, the i0S application sends the location of the large model to the pipeline
servers. The pipeline servers subsequently download the remote model, optimize
it for the mobile device and provide a preview as well as a downloadable bundle
for the device to further process as needed (cp. Figure 2).

Towards Novel Applications for Presentation of 3D Content on the Web 11

4.2 MeshLab Web Export Filter

Another interesting example of use of the CIF API regards the extension of the
well-known geometry processing software MeshLab for exporting 3D models for
the Web. This permits any user to deploy his/her content on a web site, even if
the user has no knowledge of 3D graphics or web programming.

(8 Meshiab 320it 1133~ Project i)

AN OxBB@I @A &

XX %

This fiter prepares a Web version of the input 30
model according to a chosen pre-defined
template. Itis based on the CIF API of the V-
MUST CIF PIPELINE.
et s
Web Template: |Standard Viewer Z;
Notification email: - youremail@domain.com

This fiter prepares a Web version of the input 0

model according to a chosen pre-defined
template. It is based on the CIF API of the V-
MUST CIF PIPELINE.

Web Template:

Notification emai:

Fig. 3. The MeshLab plugin allows the user to send models stored in different MeshLab
layers to the pipeline. Furthermore, she can select a target template and leave an email
address to which the pipeline sends a notification email with download and preview
links upon completion of the transcoding process.

A specific plugin has been designed for this purpose. The MeshLab user,
after doing the desired processing on the 3D content, can use this Web FExport
plugin to prepare its content for the Web. The plugin requires to select the 3D
model to convert (since multiple 3D models can be loaded in different layers in
MeshLab), to select the application template according to which the 3D content
will be prepared for the Web, and to enter a notification email to get the results,
i.e. the converted model. The notification email contains also the link where to
download the web package prepared by the CIF. Obviously, the selection of a
different application template causes that a different web package is generated.
Figure 3 shows this plugin in action. As can be also seen, the converted output
does not necessarily to be in X3D/X3DOM format, but can be also any other
3D format convenient for the web, like the Nexus format for multi-resolution
meshes [24], which now is also available as a WebGL/SpiderGL implementation
on the client side.

12 A. Aderhold et al.

From an implementation point of view, since MeshLab uses extensively the
@t framework, the Web Export plugin simply performs the necessary HTTP
requests using the @t Network module that comes along with Qt.

5 Conclusion and Future Work

With this publication we solved a standing issue of the Common Implementa-
tion Framework for Online Virtual Museums. We have shown how the CIF can
be utilized as a backend service for a wider audience than just the CH domain
through the introduction of a unified middleware access layer based on top of
the HTTP and JSON standards. We applied a REST [12] inspired architectural
style to access entities within the system as resources. During this process we
established a vocabulary generic enough to be applicable to various domains
that use 3D models as well as narrow enough to be useful in practice. Applying
well understood standards like HTTP as a transfer channel and the light-weight
JSON as data exchange format, on top of this vocabulary, we achieved a sys-
tem which can be wielded by 3rd party workflows, applications, programming
languages, or even shell scripts.

To demonstrate the usefulness as well as the technical possibility, we have
shown two use cases where the pipeline API can be utilized to improve usability
and optimize workflow for end-users. First, a novel mobile application has been
created that allows to browse an archive of possibly large 3D models and convert
a model, just-in-time, to a device optimized form for immediate display and/or
storage on the device. Second, the well-known MeshLab application has been
extended by a plugin, which allows the user to export 3D models to a Web site
using the CIF as a backend service.

While the CIF matured considerably the past year, there are many areas
which remain unexplored. First and foremost, the powerful Application Bundle
and Template mechanism, as well as more specific details of the application
generation layer, still need to be considered in more detail. Another standing
issue is how and where the input and output is stored and organized. Even though
we introduced the bucket as a storage container and organization concept in this
paper, the advance of cloud-based storage offerings provides a good opportunity
for further research.

The entire topic of scalability, which has been touched upon in [1], is another
work in progress. For example, the automation of a process to dynamically al-
locate cloud resources and startup/shutdown machines on-demand for a given
set of model conversions and/or based on pre- or auto-determined criterias like
time, budget, and model complexity has not yet been thoroughly explored.

While the API presented here is heavily influenced by Fielding’s REST ar-
chitectural patterns, it is not truly RESTful in the original sense (see also [11]).
The approach we used is coherent, pragmatic and used by many web services
today and achieves a Level 2 rating in the Richardson Maturity Model (cp. [13]).
A future interesting area of research might be to modify the CIF API to adhere
strictly to REST principles.

Towards Novel Applications for Presentation of 3D Content on the Web 13

Finally, the presented iOS application is in its early stages and leaves many
areas of improvement. For example, caching of optimized models and metadata
has not yet been realized (which is a requirement for offline usage). Furthermore,
additional features like the annotation of models, sharing and social media in-
tegration, geo-location related features may present further interesting areas of
research.

Free Software. The results of this research as well as prior efforts are all
available in form of free and open source software projects.

— MeshLab: http://meshlab.sourceforge.net
— CIF Pipeline: http://github.com/aha/pipeline
— 10S App: http://github.com/annakasia79/modelviewer

Acknowledgments. Portions of this research were carried out within the FP7-
funded EU project V-MusT. The 3D model of the cruciform figurine shown in
Figure 3 has been kindly provided by the Cyprus Institute. Permission of use
has been granted by the Department of Antiquities, Cyprus.

References

1. Aderhold, A., Jung, Y., Wilkosinksa, K., Graf, H., Fellner, D.W.: Distributed 3d
model optimization for the web with the common implementation framework for
online virtual museums. In: Proceedings Digital Heritage 2013, vol. 2, pp. 719-726.
IEEE and Eurographics (2013)

2. Apple, Inc.: The ios developer library (2013),
http://developer.apple.com/library/ios/

3. Arnold, D.: 3d-coform: Tools and expertise for 3d collection formation. In: Pro-
ceedings of EVA, pp. 94-99 (2009)

4. Baumann, P., et al.: Earthserver - european scalable earth science service environ-
ment (2011), http://www.earthserver.eu

5. Behr, J., Jung, Y., Drevensek, T., Aderhold, A.: Dynamic and interactive aspects
of x3dom. In: Proceedings Web3D 2011, pp. 81-87. ACM, New York (2011)

6. Behr, J., Jung, Y., Franke, T., Sturm, T.: Using images and explicit binary con-
tainer for efficient and incremental delivery of declarative 3d scenes on the web.
In: Proceedings Web3D 2012, pp. 17-25. ACM, New York (2012)

7. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia,
G.: Meshlab: an open-source mesh processing tool. In: Sixth Eurographics Italian
Chapter Conference, pp. 129-136 (2008)

8. Doerr, M., Tzompanaki, K., Theodoridou, M., Georgis, C., Axaridou, A., Have-
mann, S.: A repository for 3d model production and interpretation in culture and
beyond. In: Proceedings of the 11th International Conference on Virtual Reality,
Archaeology and Cultural Heritage, VAST 2010, pp. 97-104 (2010)

9. Ecma International: Standard ecma-404, the json data interchange format, 1st edn.
(2013)

10. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol — http/1.1 (1999)

http://meshlab.sourceforge.net
http://github.com/aha/pipeline
http://github.com/annakasia79/modelviewer
http://developer.apple.com/library/ios/
http://www.earthserver.eu

14

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Aderhold et al.

Fielding, R.: Rest apis must be hypertext-driven (2008),
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California, Irvine (2000)

Fowler, M.: Richardson maturity model (2010),
http://martinfowler.com/articles/richardsonMaturityModel.html
Fraunhofer Gesellschaft: Instant Reality (2013), http://www.instantreality.org
Fraunhofer Gesellschaft: Pipeline Documentation (2013),
http://pipeline.readthedocs.org

Jung, Y., Behr, J., Graf, H.: X3dom as carrier of the virtual heritage. In: Re-
mondino, F. (ed.) Intl. Society for Photogrammetry and Remote Sensing (ISPRS):
Proceedings of the 4th ISPRS International Workshop 3D-ARCH 2011: 3D Virtual
Reconstruction and Visualization of Complex Architectures (2011)

Jung, Y., Limper, H.P., Schwenk, K., Behr, J.: Fast and efficient vertex data rep-
resentations for the web. In: Proceedings of the 4th Intl. Conf. on Information
Visualization Theory and Applications, pp. 601-606. SciTePress (2013)

Koller, D., Frischer, B., Humphreys, G.: Research challenges for digital archives of
3d cultural heritage models. J. Comput. Cult. Herit. 2(3), 7:1-7:17 (2010)
Limper, M., Jung, Y., Behr, J., Sturm, T., Franke, T., Schwenk, K., Kuijper,
A.: Fast, progressive loading of binary-encoded declarative-3d web content. IEEE
Computer Graphics and Applications 33(5), 26-36 (2013)

Lucci Baldassari, G., Demetrescu, E., Pescarin, S., Eriksson, J., Graf, H.: Behind
livias villa: A case study for the devolution of large scale interactive “in-site” to
“on-line” application. In: Marcus, A. (ed.) DUXU/HCII 2013, Part IV. LNCS,
vol. 8015, pp. 238-247. Springer, Heidelberg (2013)

Marrin, C.: WebGL specification,
http://khronos.org/registry/webgl/specs/latest/ (2012)

Microsoft: Webgl api for internet explorer (2014),
http://msdn.microsoft.com/en-us/library/ie/dn302469v=vs.85.aspx

Mozilla: Circus — A Process and Socket Manager (2012),
http://circus.readthedocs.org

Ponchio, F.: Multiresolution structures for interactive visualization of very large
3D datasets. Ph.D. thesis, Clausthal University of Technology (2008),
http://vcg.isti.cnr.it/nexus/

Reese, W.: Nginx: The high-performance web server and reverse proxy. Linux
J. 2008(173) (2008)

Scopigno, R., Callieri, M., Cignoni, P., Corsini, M., Dellepiane, M., Ponchio, F.,
Ranzuglia, G.: 3d models for cultural heritage: Beyond plain visualization. Com-
puter 44(7), 48-55 (2011)

Stenberg, D., Fandrich, D., Tse, Y.: curl groks urls, http://curl.haxx.se/

Web 3D Consortium: X3d international standards (2013),
http://web3d.org/x3d/specifications/

Wilkosinska, K., Aderhold, A., Graf, H., Jung, Y.: Towards a common implemen-
tation framework for online virtual museums. In: Marcus, A. (ed.) DUXU/HCII
2013, Part II. LNCS, vol. 8013, pp. 321-330. Springer, Heidelberg (2013)

Ziade, T.: Chaussette WSGI Server (2012), http://chaussette.readthedocs.org

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.instantreality.org
http://pipeline.readthedocs.org
http://khronos.org/registry/webgl/specs/latest/
http://msdn.microsoft.com/en-us/library/ie/dn302469v=vs.85.aspx
http://circus.readthedocs.org
http://vcg.isti.cnr.it/nexus/
http://curl.haxx.se/
http://web3d.org/x3d/specifications/
http://chaussette.readthedocs.org

	The Common Implementation Framework
as Service – Towards Novel Applications
for Streamlined Presentation of 3D Content
on the Web

	1 Introduction
	2 Related Work
	2.1 Foundation Technologies
	2.2 State of the CIF

	3 Resource-Oriented Access
	3.1 Entities, Resources and Operations
	3.2 HTTP and JSON

	4 Use Cases
	4.1 Mobile 3D Repository Browser
	4.2 MeshLab Web Export Filter

	5 Conclusion and Future Work
	References

