Skip to main content

Attention Based Classification Learning in GLVQ and Asymmetric Misclassification Assessment

  • Conference paper
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

Abstract

The general aim in classification learning by supervised training is to achieve a high classification performance, frequently judged in terms of classification accuracy. A powerful method is the generalized learning vector quantizer, which realizes a gradient based optimization scheme based on a cost function approximating the usual symmetric misclassification rate. In this paper we investigate a modification of this approach taking into account asymmetric misclassification penalties to reflect structural knowledge of external experts about the data, as it is frequently the case for instance in medicine. Further we also discuss the weighting of importance for the considered classes in the classification problem. We show that both aspects can be seen as a kind of attention based learning strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthel, H., Villmann, T., Hermann, W., Hesse, S., Kühn, H.-J., Wagner, A., Kluge, R.: Different patterns of brain glucose consumption in Wilsons disease. Zeitschrift für Gastroenterologie 39, 241 (2001)

    Google Scholar 

  2. Biehl, M., Kästner, M., Lange, M., Villmann, T.: Non-Euclidean principal component analysis and Oja’s learning rule – theoretical aspects. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 23–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Der, R., Herrmann, M.: Attention based partitioning. In: der Meer, M.V. (ed.) Bericht Des Status–Seminar Des BMFT Neuroinformatik, pp. 441–446. DLR, Berlin (1992)

    Google Scholar 

  4. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, NY (1973)

    MATH  Google Scholar 

  5. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  6. Hermann, W., Caca, K., Eggers, B., Villmann, T., Clark, D., Berr, F., Wagner, A.: Genotype correlation with fine motor symptoms in patients with Wilson’s disease. European Neurology 48, 97–101 (2002)

    Article  Google Scholar 

  7. Hermann, W., Günther, P., Kühn, H.-J., Schneider, J., Eichelkraut, S., Villmann, T., Strecker, K., Schwarz, J., Wagner, A.: FAEP und Morphometrie des Mesenzephalons bei Morbus Wilson. Aktuelle Neurologie 34(10), 547–554 (2007)

    Article  Google Scholar 

  8. Hermann, W., Villmann, T., Grahmann, F., Kühn, H., Wagner, A.: Investigation of fine motoric disturbances in Wilson’s disease. Neurological Sciences 23(6), 279–285 (2003)

    Article  Google Scholar 

  9. Hermann, W., Villmann, T., Wagner, A.: Elektrophysiologisches Schädigungsprofil von Patienten mit einem Morbus Wilson’. Der Nervenarzt 74(10), 881–887 (2003)

    Article  Google Scholar 

  10. Kaden, M., Hermann, W., Villmann, T.: Optimization of general statistical accuracy measures for classification based on learning vector quantization. In: Verleysen, M. (ed.) Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014), Louvain-La-Neuve, Belgium (page accepted, 2014), i6doc.com

  11. Kaden, M., Villmann, T.: A framework for optimization of statistical classification measures based on generalized learning vector quantization. Machine Learning Reports, 7(MLR-02-2013), 69–76 (2013), http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_02_2013.pdf , ISSN:1865-3960

  12. Kästner, M., Riedel, M., Strickert, M., Hermann, W., Villmann, T.: Border-sensitive learning in kernelized learning vector quantization. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013, Part I. LNCS, vol. 7902, pp. 357–366. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Lange, M., Biehl, M., Villmann, T.: Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing (page in press, 2014)

    Google Scholar 

  14. Lange, M., Villmann, T.: Derivatives of l p-norms and their approximations. Machine Learning Reports 7(MLR-04-2013), 43–59 (2013), http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_04_013.pdf , ISSN:1865-3960

  15. Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage Iysozyme. Biochimica et Biophysica Acta 405, 442–451 (1975)

    Article  Google Scholar 

  16. Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    MATH  Google Scholar 

  17. Sachs, L.: Angewandte Statistik, 7th edn. Springer (1992)

    Google Scholar 

  18. Sato, A.S., Yamada, K.: Generalized learning vector quantization. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 423–429. MIT Press (1995)

    Google Scholar 

  19. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  Google Scholar 

  20. Strickert, M., Schleif, F.-M., Seiffert, U., Villmann, T.: Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial (37), 37–44 (2008)

    Google Scholar 

  21. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  Google Scholar 

  22. Villmann, T., Haase, S., Kaden, M.: Kernelized vector quantization in gradient-descent learning. Neurocomputing (page in press, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaden, M., Hermann, W., Villmann, T. (2014). Attention Based Classification Learning in GLVQ and Asymmetric Misclassification Assessment. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics