
SPARQL Query Writing with Recommendations
Based on Datasets

Gergő Gombos and Attila Kiss

Eötvös Loránd University, Budapest, Hungary
{ggombos,kiss}@inf.elte.hu

Abstract. When we write a SPARQL query, we need to know the structure of
the dataset. In the relation databases the tables have a scheme, but the seman-
tic data do not have. Autocompletion function exists in SQL environment, but it
does not exist in SPARQL environment. We made a system that can help to write
SPARQL query. The system has two features. The first is the prefix recommend.
We can write shorter queries if we use prefixes because we do not need to write
the long IRIs. The second feature is the predicate-based recommendation based
on the type of the variable. If a variable is in the query and it has a type condition,
then our system recommends further predicates of this type. Our system needs
information about the dataset for the recommendation. We can get these informa-
tion with simple SPARQL queries. The queries run on a federated system. It is
useful because the user does not need any information about the endpoints.

Keywords: SPARQL, Semantic Web, Linked Data, LOD Cloud, Federated
system.

1 Introduction

The aim of the semantic web is to make a big knowledge base from the Internet. These
knowledges can be combined and we can get more information about the things. We use
the SPARQL language for querying this large semantic data. The query has some con-
ditions that decrease the result. The result need to match these conditions. This solution
is similar to the SQL in the relational database environment, where the data are stored
in the relational tables and we give the conditions that have to be met. If we know the
syntax of the SQL, it is not a problem writing these kinds of query. We need to know
just the tables and the columns of the tables. Most database clients have autocompletion
feature that makes easy the creation of the query. In the semantic web world it is not
so simple. We need to know the dataset and its structure in order to write a query. The
advantages of the autocompletion can be used for writing SPARQL queries. When we
make a query we usually use the prefix form of the entities. The prefixes give us the
opportunity to use the short string instead of the long IRIs. This makes easier writing
of the query for us, but the query engines need the full IRIs of the things. Therefore the
prefix recommendation is an important function of the semantic recommender system.
Another important thing is a predicate recommendation because the semantic data is un-
structured and we do not know what kind of predicate we can use. For example even, if

S. Yamamoto (Ed.): HIMI 2014, Part I, LNCS 8521, pp. 310–319, 2014.
c© Springer International Publishing Switzerland 2014

SPARQL Query Writing with Recommendations Based on Datasets 311

we know the type of a variable, we do not know the other predicates. Therefore, the rec-
ommendation system queries the datasets. Because the datasets are in the LOD Cloud
we need to choose the appropriate endpoint. For this we need to know the URL of the
endpoint and we need to know what endpoint stores the specific data, which is usually
not available for the user. Our aim is to create a general system that uses all endpoints
and solves the endpoint selection problem. The federated systems select automatically
the required endpoints and they summarize the results from the endpoints.

In this paper, we will describe the formal model of federated systems with Abstract
State Machine (ASM). Then, we will refine the model to the current system. Then, we
will present a prototype that is able to make recommendations based on a SPARQL
query.

2 Related Work

The authors wrote [3] that the semantic data are difficult to access because the non-
expert users cannot know the syntax of the SPARQL. They will produce the Linked
Query Wizard. The hypothesis for the Linked Data Query Wizard is: the users know
spreadsheet applications like Excel, and the idea is to make the semantic data into tab-
ular form. Our solution provides the expert and non-expert users to make SPARQL
queries easier.

The SPARQL is often given with visual tool. One of them is the SPARQL Views
[5] that is an extension for Drupal. This extension helps the inexperienced users. The
system queries the predicates from the given endpoint, and it recommends these to the
users. The other function is the automatically prefix adding. When the user chooses a
predicate, the system adds the necessary prefix to the query. Our solution uses a feder-
ated system and we can use the recommendation without choose any endpoint.

Another visual SPARQL editor is the NITELIGHT [4]. The NITELIGHT tool is
a web-based application in JavaScript. The application provides an ontology browser,
which allows us to add predicates to our query based on ontology. The queries are made
by linking the components. The completed query is syntactically correct. In contrast to
our system it has not recommendations. The user of the system needs some knowledge
about SPARQL.

Kramer et. all [6] wrote querying Linked Open Data with SPARQL is different from
querying relational databases. Their aim is to make autocompletion function for query
writing. Their solution is to build indexes to the queries from logs. If the user writes
a ’<’ symbol then the system recommends the potential IRIs. If the user writes a ’?’
symbol it recommends the variables. When the user chose a variable the system recom-
mends the predicates based on the previous queries. In contrast to our system provides
recommendations based on the dataset.

Lehmann et all.[7] presented a technique for making SPARQL. Their solution is
based on the question-answer and the positive learning techniques. The user enters a
query for which the system makes recommendations. The user selects a positive ex-
ample from the recommendations. That is the base of the next recommendations. This
iteration runs until the user reaches the appropriate query or there are no more learnable
query. This solution uses SPARQL Endpoints like our solutions.

312 G. Gombos and A. Kiss

3 Semantic Web

We mentioned the Semantic Web in our related work [12]. The Semantic Web [1] aims
at creating the web of data: a large distributed knowledge base, which contains the
information of the World Wide Web in a format which is directly interpretable by com-
puters. The goal of this web of linked data is to allow better, more sensible methods
for information search, and knowledge inference. To achieve this, the Semantic Web
provides a data model and its query language. The data model called the Resource De-
scription Framework (RDF) [13] uses a simple conceptual description of the informa-
tion: we represent our knowledge as statements in the form of subject-predicate-object
(or entity-attribute-value). This way our data can be seen as a directed graph, where a
statement is an edge labeled with the predicate, pointing from the subjects node to the
objects node. The query language called SPARQL [2] formulates the queries as graph
patterns, thus the query results can be calculated by matching the pattern against the
data graph.

4 Formal Model

We made a formal model with ASM (Abstract State Machine). ASMs represent a math-
ematically well founded framework for system design and analysis [10]. It is introduced
by Gurevich [9]. The federated model is inspired by the ASM model of the grid systems
[8]. The grid systems are distributed and parallel like the federated systems. The ASM
algebra is made up of universes, functions, and rules. The universes include the entities.
The functions provide the link between the universes. The rules are transaction steps
and they have condition to activate. The ASM has a ground model that is a base of the
system functions. This model will be refined later. The model describes the expected
requirements of the system. We describe below the workflows of the federated systems
with ASM and we refine for the SPARQL recommendation system.

4.1 Model for Federated System

A semantic Federated system (FEDERATED universe) operates as follows. The system
receives a query (QUERY universe) which sends to several SPARQL Endpoints (END-
POINT universe) and it summarizes the results (RESULT universe) of the endpoints
and it returns with the answer. The ground model does not deal with endpoint selection
method. It helps to be the model general. The endpoint selection function can be given
in a refined model, but these are not discussed in this paper. The universes have the
true, f alse, unde f values too.

The relations between the universes can be described by functions. We describe the
state of the federated system with f state : FEDERATED→ {wait, start req, running}
function. This state is wait if the system is waiting for a request. It is start req when the
system prepares the requests to the endpoints. Finally, the state is running if the system
works on a query. When a request comes into the system we can write the connection
with the f workingOn : FEDERATED → QUERY which says that the federated sys-
tem works on the query. The system converts the query to requests. The exact request

SPARQL Query Writing with Recommendations Based on Datasets 313

is not important in the ground model. It can be refined in the lower-level model because
it depends on the architecture of the federated system. The query and the requests con-
nect with reqQuery : REQUEST → QUERY function. A request will be executed in
a given endpoint. The connection between the request and the endpoint is written with
eworkingOn : ENDPOINT → REQUEST function. The start of the request depends
on the state of the endpoint. Initially, their state are waiting. These endpoints are wait-
ing for the requests. The estate : ENDPOINT → {running,waiting, f inished} func-
tion describes the state of the given endpoint. The state of the endpoint changes when
an event occurs. We describe an event with event : ENDPOINT → {timeout, f inish}.
The timeout occurs when the endpoint cannot answer the request and the time is out.
It is necessary because the system needs minimal response time for usability. The
f inish state occurs when the result is complete on time. We get the results with rres :
REQUEST→ RESULT function. The federated system summarizes these results. The
method of the summarization is not discussed in the ground model. Finally, the final
result stores with qres : QUERY→ RESULT.

The model needs an initial step. Each item of the model need to be reset. First, we set
the state of the endpoints: ∀e ∈ ENDPOINT : estate(e) := waiting; eworkingOn(e) :=
unde f and we set the state of the system: f state(f) := wait.

The system operations are described with rules.

Rule 1 (Send a Query to the Federated System). The first rule describes that the
system receives a query (q ∈ QUERY). The query can run only if the system is in
waiting state. In this time the state of the system is changed to start req that means it
prepares the requests and we set the query result to empty, and we set the system work
on this query.

i f f state(f) = wait then
f workingOn(f) := q
f state(f) := start req
qres(q) := unde f

e n d i f

Rule 2 (Federated System Send the Request to the Endpoints). The evaluation of
the query needs requests. The following rule creates a request to each endpoint that has
waiting state. In this case, we do not deal whit what the request is. In some system this
may be the whole query, in another system just the conditions of the query. When the
system makes a request it is set the query and the endpoint for the request. It changes
the state of the endpoint to running and the result of the request to empty.

i f f state(f) = start req && f workingOn(f) = q then
do f o r a l l e ∈ ENDPOINT

i f estate(e) = waiting then
EXTEND REQUEST by r e q with

reqQuery(req) := q
eworkingOn(e) := req
estate(e) := running
rres(req) := unde f

314 G. Gombos and A. Kiss

e n d e x t e n d
e n d i f
f state(f) = running

enddo
e n d i f

The EXTEND means that we create a new item into the universe, in this case in the
REQUEST.

Rule 3 (Endpoint Finish or Timeout). A request may end in two states. One is if the
query was run without any problems. The second state is if the request could not finish
within a certain time. In both cases an event occurs. We take the result of the request to
the result of the query with ’+’ operator. We do not deal what is mean the ’+’ operator
and how is it work.

l e t req = eworkingOn(e)
i f event(e) = f inish || event(e) = timeout then

eworkingOn(e) = unde f
estate(e) = f inished
qres(q) := qres(q) + rres(req)
rres(req) := unde f
REQUEST(req) = unde f

e n d i f

The REQUEST(req) = unde f means that the item (req) is removed from the uni-
verse (REQUEST).

Rule 4 (terminate) The last process is the termination process. This process is run
when the state of each endpoint changed to f inished. We get the result in qres(q). Af-
terthat we need to restore the system state to the initial state for the further requests.

i f ∀e ∈ ENDPOINT : estate(e) = f inished && f state(f) = running then
do f o r a l l e ∈ ENDPOINT

estate(e) := waiting
f state(f) := wait
f workingOn(f) := unde f

enddo
e n d i f

4.2 Finite Model for SPARQL Recommendation

We showed in the previous model how the system gets a query and how a federated
system will process this query. Now we refine this model for the current task. The
aim is to make query, so the input of the system is not a QUERY, just a part of the
query. For this reason, we need to introduce new universes. In this task we focus on two
parts of the process. One is a prefix recommendation. For recommendation we need the
SHORTPREFIX and the LONGPREFIX universes. These universes will store the short

SPARQL Query Writing with Recommendations Based on Datasets 315

and long form of the prefixes. Another aim is the condition recommendation. For this
we need introduce the CONDITION universe.

We make new expectations on the new refined model. The system is able to define the
prefixes without sending a request to the endpoints. This may be because the prefixes
usually are fixed, so we can use these as a constant. The REQUESTs contain CONDI-
TION instead of QUERY. The REQUEST depends on the CONDITION and it is made
if the CONDITION has a type information.

The new universes need new functions. The first is a pre f Mapped :
SHORTPREFIX → LONGPREFIX which performs the mapping of the prefixes.
We need to resolve the short prefix during the query writing, so this mapping is
just one direction. Because the query is now divided into several parts, we need the
pbelongsTo : SHORTPREFIX → QUERY and the cbelongsTo : CONDITION →
QUERY functions for the connection of the three universes. We need to check that
the CONDITION has a type (rd f : type) information, this check is made by the
hasType : CONDITION→ {true, f alse} function. Another checking functions are the
hasCondition : QUERY → {true, f alse} and the hasPre f ix : QUERY → true, f alse.
These functions check that the QUERY has PREFIX or CONDITION. In the ground
model we used the reqQuery function, but now we need to change this on the current
model. The input of this function was QUERY, but now this will be CONDITION.

We extend the initial step with a loads process that load the short and long version
of prefixes to the pre f Mapped. The exact implementation of the loading is not included
the model. Another supplement is that we set the value of the cbelongsTo, pbelongsTo
functions based on the (sub)query.

Rule 1 (Refined). On the first rule we need just a minimal change. The ground model
sent the query to the system every time, but now it sends just if the query has PREFIX
or CONDITION.

i f f state(f) = wait && (hasPre f ix(q) || hasCondition(q)) then
f workingOn(f) := q
f state(f) := start req
qres(q) := unde f

e n d i f

Rule 2 (Refined). The second rule sends the queries to the endpoints. If the query has
PREFIX it does not need to send the query because we can answer the prefix recom-
mendation without it. If the query has CONDITION, the system works like a ground
model.

i f f state(f) = startreq && f workingOn(f) = q then
i f hasCondition(q) then

do f o r a l l c ∈ CONDITION
i f cbelongsTo(c) = q && hasType(c)

do f o r a l l e ∈ ENDPOINT
i f estate(e) = waiting

EXTEND REQUEST by req with
reqQuery(req) := c

316 G. Gombos and A. Kiss

eworkingOn(e) := req
estate(e) := running
rres(req) := unde f

e n d e x t e n d
e n d i f

enddo
e n d i f

enddo
f state(f) = running

e n d i f
i f hasPre f ix(q) then

do f o r a l l p ∈ PREFIX
i f pbelongsTo(p) = q

qres(q) := qres(q) + pre f Mapped(p)
e n d i f

enddo
e n d i f

e n d i f

5 Implemented System

We built a prototype based on the previous model. The features of the prototype are the
prefix recommendation and condition recommendation that were described above. On
Fig. 2 we can see the Web UI of the system. It has a query box, where the user writes the
query and the system send an AJAX request to the backend, where the model is working.
The system uses predefined SPARQL endpoints: factbook1, dataGov2, dblp3, dbpedia4,
factforge5, openlinkSW6, linkedMDB7, void8. In addition, the system stores the short
and long forms of the prefixes. The prefixes are from the prefix.cc. The federated system
[11] usage is advantageous because the user does not need to know, what endpoint store
the data or what is the URL of the endpoint.

The system works as follows. If there is any change in the query, then that will be sent
to the backend asynchronously. We use ARQ9 to process the SPARQL query. We get the
condition from the WHERE with this tool. If the query is wrong, then the ARQ write the
problem and we show them on the UI, see that on Fig. 1. If the system finds a prefix that
is not defined previously, it searches them from prefixes and make a recommendation.
If we want to use this recommendation, we need just click on the ’add’ button. It is
possible that we wrote a prefix, that the system does not recognize - this may be if we

1 http://wifo5-04.informatik.uni-mannheim.de/factbook/sparql
2 http://services.data.gov/sparql
3 http://dblp.rkbexplorer.com/sparql
4 http://dbpedia.org/sparql
5 http://factforge.net/sparql
6 http://lod.openlinksw.com/sparql
7 http://data.linkedmdb.org/sparql
8 http://void.rkbexplorer.com/sparql
9 http://jena.sourceforge.net/ARQ/

http://wifo5-04.informatik.uni-mannheim.de/factbook/sparql
http://services.data.gov/sparql
http://dblp.rkbexplorer.com/sparql
http://dbpedia.org/sparql
http://factforge.net/sparql
http://lod.openlinksw.com/sparql
http://data.linkedmdb.org/sparql
http://void.rkbexplorer.com/sparql
http://jena.sourceforge.net/ARQ/

SPARQL Query Writing with Recommendations Based on Datasets 317

Fig. 1. Web UI of the system with error

use another short form of an IRI - then we get an error message. On Fig. 2 we can see
the dbpedia : Person IRI that has the dbpedia as prefix. The system knows this prefix
and recommends this line: ’PREFIX dbpedia: <http://dbpedia.org/resource>’.

Another function of the system is that the condition recommendation. The system
makes recommendations to extend the query with new filters. The basis for that is the
variable with type (rd f : type or short form a) information. The system collects addi-
tional information about a type with simple SPARQL queries. It sends the following
query to all endpoints.

SELECT DISTINCT ? x WHERE {
? x r d f : t y p e dbped ia : Person .

} LIMIT 3

We ask three items because one item may not have some predicates and another item
has. Ask three items is fast enough that the system is able to respond in time. When the
system gets three items that has a same type, the system asks the possible predicates of
the items. We write another SPARQL query for this and the system makes the unique
result.

SELECT DISTINCT ? s WHERE {
item ? s ?p .

}

The first query returns the items that are Persons and after the second query the
system makes the unique predicates.

The system completes this process on all endpoints. For fastest response time these
queries run in parallel. Since some endpoint may not be available or overloaded, the
answer would be a long time, so the system has a timelimit which will drop the request
if it does not receive result before the limit. The limit is on our system is 5 seconds.
The system is faster with limit, but we cannot get all results. In many cases this is not a
problem because a lot of data are stored more endpoints.

318 G. Gombos and A. Kiss

Fig. 2. Web UI of the system with recommendation

6 Conclusion and Future Work

One of the difficulties of writing a SPARQL query that we do not know the scheme
of the dataset. Without the scheme we do not know what we can query about an item.
Another problem is the long IRIs in the query. The SPARQL provides a solution to use
prefixes, but it is often required to search them. The system, which is described in this
paper, gives a solution to these problems. The system makes recommendations when
we are writing the SPARQL query. It offers the necessary prefixes and the possible
properties of a variable.

The system is currently used only for the preparation of SPARQL query. The final
query can be used on another system. Our plan is that the query can be automatically
sent to the appropriate endpoint. In addition, we would like to make the extraction of
the prefixes automatically as mentioned above. Create a query usually starts with an
initial item. In this system the search IRI function is not available, in turn, for example
the Virtuoso has the Facet for this function. We plan to write this function to the model
and implement to the system. We could make the system when we use some cache. This
cache can store information about the previous requests. If some endpoint did not send
any result about some type, then the system does not need to ask again.

Acknowledgments. This work was partially supported by the European Union and
the European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013). We are grateful to Bálint Molnár for helpful discussion and
comments about ASM.

SPARQL Query Writing with Recommendations Based on Datasets 319

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5),
28–37 (2001)

2. Prud Hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommenda-
tion 15 (2008)

3. Hoefler, P.: Linked Data Interfaces for Non-expert Users. In: Cimiano, P., Corcho, O., Pre-
sutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 702–706.
Springer, Heidelberg (2013)

4. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: NITELIGHT: A Graphical Tool for
Semantic Query Construction (2008)

5. Clark, L.: SPARQL Views: A Visual SPARQL Query Builder for Drupal. ISWC Posters &
Demos (2010)

6. Kramer, K., Dividino, R., Grner, G.: SPACE: SPARQL Index for Efficient Autocompletion.
In: ISWC Posters & Demonstrations Track, pp. 157–160 (2013)

7. Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. In: An-
toniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J.
(eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)

8. Nmeth, Z., Sunderam, V.: A formal framework for defining grid systems. In: 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid. IEEE (2002)

9. Gurevich, Y.: Evolving algebras: An attempt to discover semantics. In: Current Trends in
Theoretical Computer Science, pp. 266–292 (1993)

10. Börger, E.: High level system design and analysis using abstract state machines. In: Hutter,
D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp. 1–43. Springer, Heidelberg
(1999)

11. Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A., Hausenblas, M.: Querying over
Federated SPARQL Endpoints-A State of the Art Survey. arXiv preprint arXiv:1306.1723
(2013)

12. Matuszka, T., Gombos, G., Kiss, A.: A New Approach for Indoor Navigation Using Semantic
Webtechnologies and Augmented Reality. In: Shumaker, R. (ed.) VAMR/HCII 2013, Part I.
LNCS, vol. 8021, pp. 202–210. Springer, Heidelberg (2013)

13. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Schema Specification,
http://www.w3.org/TR/rdf-schema

http://www.w3.org/TR/rdf-schema

	SPARQL Query Writing with Recommendations
Based on Datasets

	1 Introduction
	2 Related Work
	3 Semantic Web
	4 Formal Model
	4.1 Model for Federated System
	4.2 Finite Model for SPARQL Recommendation

	5 Implemented System
	6 Conclusion and Future Work
	References

