On Weighted Petri Net Transducers

Robert Lorenz!, Markus Huber!, and Giinther Wirsching?

' Department of Computer Science
University of Augsburg, Germany
firstname.lastname@informatik.uni-augsburg.de
2 Mathematisch-Geographische Fakultit
Catholic University of Eichstitt, Germany
guenther.wirsching@ku.de

Abstract In this paper we present a basic framework for weighted Petri net trans-
ducers (PNTs) for the translation of partial languages (consisting of partial words)
as a natural generalisation of finite state transducers (FSTs).

Concerning weights, we use the algebraic structure of continuous concurrent
semirings which is based on bisemirings and induces a natural order on its ele-
ments. Using the operations of this algebra, it is possible to define the weight
of sequential parallel partial words in a standard way. We define the weight of a
general partial word as the supremum of the weights of all of its sequential par-
allel extensions. As a fundamental result we show that concurrent semirings are
the least restrictive idempotent bisemiring structure such that partial words with
fewer dependencies have bigger weights. Moreover, the weight definition turns
out to be compositional, i.e. the weight of (sequential or parallel) composed par-
tial words equals the corresponding bisemiring composition of the weights of its
components.

To be able to create complex PNTs through composition of simple PNTs, we
introduce clean PNTs and the composition operations union, product, closure,
parallel product and language composition on clean PNTs, lifting standard com-
position operations on FSTs. Composed PNTs yield a compositional computa-
tion of weights, where in the case of language composition such a compositional
computation is possible only in restricted cases. Moreover, we give definitions
for equivalent PNTs and show that all composition operations preserve equival-
ence. We also show that under certain conditions concerning the algebraic weight
structure an FST can be represented by an equivalent PNT.

Keywords: Petri Net, Petri Net Transducer, Weighted Transducer, Labelled Par-
tial Order, Weighted Labelled Partial Order, Partial Language, Semiring, Bisemi-
ring, Concurrent Semiring, Cleanness.

1 Introduction

Weighted finite automata are classical non-deterministic finite automata in which trans-
itions carry weights [6]. These weights may represent cost, time consumption or prob-
ability of a transition execution. The behaviour of such automata is defined by a function
associating with each word the weight of its execution. For a uniform definition of the
behaviour, the set of weights is equipped with the underlying algebraic structure of a

234

semiring. A semiring provides two operations of binary addition and multiplication of
weights. The multiplication is used for determining the weight of a path, and the weight
of a word is obtained by the sum of the weights of its underlying paths. If each trans-
ition additionally is equipped with an output symbol, the resulting automaton is called
a transducer. Transducers are used for the translation between languages over different
alphabets for example in natural language processing. For weighted finite automata and
transducers (also called finite state transducers or FSTs) there are efficient implement-
ations of composition and optimisation operations in standard libraries [17,27].

There are generalisations to weighted automata over discrete structures other than
finite words, some of them introducing concurrency into the model through considering
labelled partial orders (LPOs) (also called partial words [11] or pomsets [18]), not con-
sisting of a total order on their symbols but of a partial order. In [9] an overview is given
on weighted finite automata (and transducers) processing tree structures. They are used
to recognise weighted context-free languages with weights coming from semirings and
do not consider concurrency. In [8] weighted asynchronous cellular automata accepting
weighted traces, a special restricted kind of LPOs, are described. Here also only semi-
rings are used to describe weights, i.e. no difference is made between the combination
of weights of transitions occurring in sequential order and occurring in parallel. In [14]
weighted branching automata accepting weighted sequential parallel LPOs (sp-LPOs),
which can be constructed from singletons using operations of sequential and parallel
composition, are introduced. Weights now come from bisemirings where the algebraic
structure of semirings is extended by a third operation of parallel multiplication (which
in this case needs no unit) used for the combination of weights of concurrent trans-
ition occurrences. For all these automata models there are widely developed theories
concerning equivalent representations as rational expressions or logic formulae, useful
composition operations and closure properties [6]. Another extended automata model
are Q-Automata [4] whose computations are step sequences. Q-Automata are coined
for application in quality management with weights modelling costs and coming from
a bisemiring, whose parallel multiplication may not be commutative.

The aim of this paper is the generalisation of automata based weighted transducers
through weighted Petri net transducers (PNTs). A PNT is essentially a place/trans-
ition net (PT-net) having transitions equipped with input symbols, output symbols and
weights. An LPO over the set of input symbols is translated into an LPO over the set
of output symbols via weighted LPO-runs of the net, where weights are coming from
an algebraic bisemiring structure. Thus, PNTs define (in a natural way) the translation
between partial languages, consisting of general LPOs instead of words, over different
alphabets. In this sense PNTs are a natural generalisation of automata based transducers
working on finite words, traces or sp-LPOs. There are already several publications in-
troducing PNTs and applying them in different application areas [24,23,21], however
these are mainly case studies. Up to now there is no common basic formal definition
and no theoretical development. Moreover, all existing definitions only make use of
sequential semantics of PNTs and do not consider weights. In [15,16] we introduced
first rather informal definitions of syntax and semantics of PNTs and of composition
operations applied to small case studies in the area of semantic dialogue modelling.
Another Petri net model with transitions having assigned weights are stochastic Petri

235

nets (SPNs). SPNs introduce a temporal specification of probabilistic nature and are
applied to the performance analysis of timed systems. The weights have no underlying
algebraic structure and are used to compute firing probabilities of untimed transitions.

We use a special bisemiring structure called concurrent semirings [13]' to represent
weights. Concurrent semirings are a bisemiring structure with some additional laws
interrelating its operations. They where already used by Gischer [10], who showed that
the set of all extension closed sets of LPOs can be equipped with algebraic operations
yielding a concurrent semiring. In particular, concurrent semirings have an idempotent
addition inducing a natural order on the set of weights. This feature allows to define
the weight of a general LPO in a natural way as the supremum of all weights of its
sequential parallel extensions w.r.t. this order. As a fundamental result we show that
concurrent semirings are the least restrictive idempotent bisemiring structure such that
LPOs with fewer dependencies have bigger weights. Moreover, this weight definition
turns out to be compositional, i.e. the weight of (sequential or parallel) composed LPOs
equals the corresponding bisemiring composition of the weights of its components.

In practical applications, it is important to be able to create complex transducers
through composition of simple ones. To this end we introduce cleanness of PNTs and
composition operations of union, product, closure, parallel product and language com-
position on clean PNTs, lifting standard composition operations on FSTs. Cleanness
ensures that runs always terminate properly and is shown to be preserved by the above
operations. Concerning language composition, we consider different possible adaptions
of the FST case and show that concrete constructions yield a compositional computation
of weights only in restricted cases.

Since transitions also may have empty input and/or empty output, there are always
(infinitely) many PNTs having the same input output behaviour. Such PNTs are equival-
ent (adapting the notion of equivalent FSTs). We show that the mentioned composition
operations preserve equivalence of PNTs. Under certain conditions concerning the al-
gebraic weight structure an FST can be represented by an equivalent PNT.

The presented framework mainly aims at an application in the field of semantic dia-
logue modelling as described in [26]. In [15,16] we propose the translation between ut-
terances and meanings using PNTs. Since meanings are represented by arbitrary LPOs
which need not be sequential parallel, it is not possible to use one of the mentioned
weighted automata models. Additionally, PNTs also may be used to model quantitative
aspects of computation by adding bisemiring costs to process calculi represented by
arbitrary LPOs, generalising the models from [8,14,4].

The paper is organised as follows: In section 2 we recall basic definitions, including
LPOs, Petri nets and weighted FSTs. In section 3 we introduce concurrent semirings and
weighted LPOs, and examine fundamental relationships between the weight of LPOs
and the algebraic weight structure of concurrent semirings. Then we give syntax and
semantics of PNTs, define cleanness of PNTs and equivalences on PNTs and examine
the representation of FSTs by equivalent PNTs. In section 4 we consider several com-
position operations of clean PNTs and the preservation of cleanness and equivalence

"'In [13] concurrent semirings are applied in a trace model of programme semantics. Another
axiomatic approach to partial order semantics using algebraic structures extending semirings
by an additional operation of concurrent composition is [3] using the notion of trioids.

236

under these operations. Finally, we give a brief conclusion and outlook on future work
in section 5.

All figures in this paper showing PNTs were generated with PNT. PNT is a
python library for the modular construction of PNTs through composition operations.
Constructed PNTs can be exported in all standard picture formats and in an XML-
format based on the standard PNML format. PNT.*" will serve as a basis for the im-
plementation and evaluation of algorithms for analysis, simulation and optimisation of
PNTs. Its basic functionalities were developed in the bachelor thesis [20].

2 Basic Definitions and Notations

In this section we recall basic definitions and mathematical notations.

2.1 Mathematical Preliminaries

By Ny we denote the set of non-negative integers, by N the set of positive integers.
Given a finite set X, the symbol |X| denotes the cardinality of X.

The set of all multisets over a set X is the set NoX of all functions f:X — Np.
Addition + on multisets is defined by (m + m')(x) = m(x) + m'(x). The relation <
between multisets is defined through m < m' <= 3Im" (m+m" = m’). We write x € m
if m(x) > 0. A set A C X is identified with the multiset m satisfying m(x) =1 <= x €
AAm(x) =0<= x ¢ A. A multiset m satisfying m(a) > 0 for exactly one element a
we call singleton multiset and denote it by m(a)a.

Given a binary relation R C X x Y and a binary relation S C Y x Z for sets X,Y,Z,
their composition is defined by Ro S = {(x,z) | Iy € Y ((x,y) ERA(y,2) €S)} CX X Z.
For X' C X and Y/ C Y the restriction of R onto X’ x Y’ is denoted by R|y/,y. For a
binary relation R C X x X over a set X, we denote R!'=Rand R" = RoR" ! forn > 2.
The symbol R" denotes the transitive closure |, R" of R.

Let A be a finite set of symbols. A (linear) word over A is a finite sequence of sym-
bols from A. For a word w its length |w| is defined as the number of its symbols. The
symbol € denotes the empty word satisfying || = 0. The empty word is the neutral w.r.t.
concatenation of words: we = eéw = w. By A* we denote the set of all words over A,
including the empty word. A language over A is a (possibly infinite) subset of A*. A
step over A 1s a multiset over A. A step sequence or step-wise linear word over A 1s an
element of (N)* and a step language over A is a (possibly infinite) subset of (N§)*.

A directed graph s a pair G = (V,—), where V is a finite set of nodes and -CV xV
is a binary relation over V, called the set of edges. The preset of anode v € V' is the set
v = {u| u — v}. The postset of a node v € V is the set v = {u | v — u}. A path is
a sequence of (not necessarily distinct) nodes vy ...v, (n > 1) such that v; — v;;| for
i=1,....n—1.Apathv;...v,is acycleif vi =v,. A directed graph is called acyclic if
it has no cycles. An acyclic directed graph (V, —') is an extension of an acyclic directed
graph (V,—) if -=C—'. An acyclic directed graph (V',—) is a prefix of an acyclic
directed graph (V,—) if V.CVand (V. e V')A (v =V) = (ve V).

An irreflexive partial order over a set V is a binary relation <C V x V which is
irreflexive (Vv € V : v £ v) and transitive (<=<"). We identify a finite irreflexive partial

237

order < over V with the directed graph (V,<). Two nodes v,/ € V of a irreflexive
partial order po = (V, <) are called independent if v £V and V' £ v. By coc CV xV
we denote the set of all pairs of independent nodes of V. A reflexive partial order over
V is a binary relation <C V x V which is reflexive (Vv € V : v < v), transitive and
antisymmetric (Vv eV :v<wAw <y = v=w).

2.2 Labelled Partial Orders

We use irreflexive partial orders labelled by action names to represent single non-
sequential runs of concurrent systems. The nodes of such a labelled partial order repres-
ent events and its arrows an ‘earlier than’-relation between them in the sense that one
event can be observed earlier than another event. If there are no arrows between two
events, then these events are independent and are called concurrent. Concurrent events
can be observed in arbitrary sequential order and simultaneously.

Formally, a labelled partial order (LPO) over a set X is a 3-tuple (V,<,l), where
(V,<) is a irreflexive partial order and / : V — X is a labelling function on V. LPOs
over X are also called partial words over X. In most cases, we only consider LPOs
up to isomorphism, i.e. only the labelling of events is of interest, but not the event
names. Formally, two LPOs (V,<,l) and (V', <',l’) are isomorphic if there is a bijective
renaming function 7 : V — V' satisfying [(v) = I'(I(v)) and v < w & I(v) <" I(w). If
an LPO Ipo is of the form ({v},0,1), then it is called a singleton LPO and denoted by
Ipo =1(v). We call a set of pairwise non-isomorphic LPOs a partial language. If L is a
partial language, then an LPO Ipo € L is called minimal (in L) if there is no extension
of [po in L. In figures, in general we do not show the names of the nodes of an LPO, but
only their labels and we often omit transitive arrows of LPOs for a clearer presentation.

A step-wise linear LPO is an LPO (V, <,[) where the relation co- is transitive. The
maximal sets of independent events are called steps. The steps of a step-wise linear
LPOs are linearly ordered. Thus, step-wise linear LPOs can be identified with step
sequences. A step-linearisation of an LPO Ipo is a step-wise linear LPO which is an
extension of [po. The set of sequential parallel LPOs (sp-LPOs) is the smallest set of
LPOs containing all singleton LPOs (over a set X) and being closed under the sequential
and parallel product of LPOs. The sequential product of two LPOs lpo; = (Vi,<y,1})
and Ipo, = (V2,<2,1lp) is defined by Ipoy;lpo, = (ViUV,, <1 U <o UV) X Vo,11 Uly),
where V| and V, are assumed to be disjoint. Their parallel product is defined by Ipo, ||
Ipo, = (V1 UV,, <1 U <3,l1 Ul), where again V| and V; are assumed to be disjoint. For
an LPO Ipo we denote by SP(Ipo) the set of all sequential parallel extensions of lpo and
by SP,.in(Ipo) the set of all minimal sequential parallel extensions of Ipo in SP(Ipo). If
Ipo is an extension of Ipo’, we write Ipo < Ipo’.

The sequential and parallel product of LPOs is extended to sets of LPOs A, B in the
obviousway: A || B={a|b|acA,beB}andA;B={a;b|acA,be B}. Moreover,
we define the closure of a set of LPOs A by A* = {ay;...;a, |n € N,q; € A} U{¢e},
where € denotes the empty LPO.

238

2.3 Petri Nets

A net is a 3-tuple N = (P,T,F), where P is a finite set of places, T is a finite set of
transitions disjoint from P and F C (P x T)U(T x P) is the flow relation. A marking
of a net assigns to each place p € P a number m(p) € Ny, i.e. a marking is a multiset
over P. A marked net is anet N = (P, T, F) together with an initial marking my.

A place/transition Petri net (PT-net) is a 4-tuple N = (P, T,F,W), where (P,T,F) is
anetand W: (Px T)U(T x P) — Ny is a flow weight function satisfying W (x,y) >
0 < (x,y) € F. For (transition) steps 7 over T we introduce the two multisets of places
*1(p) =icr T()W(p,t) and t° (p) = X, ()W (2, p). A transition step T can occur
in m if m > *7. If a transition step T occurs in m, then the resulting marking m’ is
defined by m’ = m — *7+ 7°. We write m — m’ to denote that T can occur in m and
that its occurrence leads to m’. A step execution in m of a PT-net is a finite sequence of
multisets of transitions ¢ = 7; ... T, such that there are markings my,...,m, satisfying
m—Ls mi 2y m,. The markings which can be reached from the initial marking
mg via step executions are called reachable.

We use LPOs over T to represent single non-sequential runs of PT-nets, i.e. the events
of an LPO represent transition occurrences. An LPO Ipo = (V,<,I) over T is an LPO-
run of a marked PT-net N = (P,T,F,W,my) if each step-linearisation of Ipo is a step
execution of N in myg. If an LPO-run Ipo = (V, <,l) occurs in a marking m, the resulting

marking m’ is defined by m’ =m—X,cy *1(v) + Zyevl(v)® . We write m % 1 to denote
the occurrence of an LPO-run Ipo.

2.4 Weighted Finite State Transducers

Finite-state transducers (FSTs) are finite automata in which each transition is augmen-
ted with an output label in addition to the familiar input label. Output labels are concat-
enated along a path to form an output sequence. Weighted transducers are finite-state
transducers in which each transition additionally carries some weight. The weights are
elements of an algebraic structure called semiring.

A semiring is a quintuple . = (§,®,®,0,1), where (S,®,0) is a commutative mon-
oid, (S,®.1) is a monoid, ® (the S-multiplication) distributes over @ (the S-addition)
from both sides of ® and the zero 0 is absorbing w.r.t. ® (0®x =x®0 = 0). If ® is
commutative, then the semiring is called commutative.

The ®-operation is used to compute the weight of a path of an FST by multiplying
the weights of the transitions along that path. The @-operation is used to compute the
weight of a pair of input and output sequences (u,v) by summing up the weights of all
paths labelled with (u,v). A weighted finite state transducer (FST) over a semiring .&
is an 8-tuple T = (X,A,0Q,I,F,E,A,p), where X is a finite alphabet of input symbols,
A is a finite alphabet of output symbols, Q is a finite set of states, I C Q is the set of
initial states, F C Q is the set of final states, E C O x (XU{e}) x (AU{e}) xS x QO
is the finite set of transitions, A : [— S is the initial weight function and p : F — S is
the final weight function. For a transition e = (q1,x,,s,q2), we denote p(e) = ¢ to be
its start state, n(e) = g its next state, ®(e) = s its weight, o(e) = x its input label and
0(e) =y its output label. Two transitions e and e; are consecutive if n(e1) = p(ez). A

239

sequence T = e ...e; € E* of consecutive transitions is called a path with start state
p(m) = p(e1) and next state n(m) = n(e). The input label of a path e;...e; is the
word o(ey)...o(ex). The output label of a path e; ... ¢, is the word J(ey) ... 8(ex). For
subsets Q1,0> C Q, u € X* and v € A*, we denote by P(Q;,Q>) the set of all paths
from states in Q) to states in Q», P(Q1,u,Q>) the subset of all paths from P(Q;,Q>)
with input label u, P(Q1,u,v,Q>) the subset of all paths from P(Q;,u, Q) with output
label v. The weight of a path is defined by w(e; ...¢;) = 0(e]) ®...® @(ex). The output
weight of a pair of words (u,v) € X* x A* is defined by

Tyv)= P Alpn)®o(r)p(n(r),

neP(Luw,F)

when the sum is well-defined in S. This is the case, for example, if the con_sidered
semiring is complete (see subsection 3.1). If P(I,u,v,F) =0, we set T (u,v) = 0. For a
detailed overview on weighted FSTs see for example [17].

3 Definition of Weighted Petri Net Transducers

In this section we introduce weighted Petri net transducers (PNTs) for the transla-
tion between partial languages. For taking weights into account, we consider weighted
LPOs (WLPOs) which are LPOs with additional node weights. Then the total weight
of a WLPO is computed from the node weights using binary operations on the set of
weights. We shall infer from a result of Gischer [10] that the algebraic structure of the
set of possible weights is not arbitrary: If we postulate that the binary operations on the
weights reflect sequential and parallel product of LPOs, then the set of possible weights
must admit the algebraic structure concurrent semiring [13]. For the translation of in-
put words into output words we equip transitions with input symbols, output symbols
and weights and consider weighted LPO-runs. Based on this idea, we define syntax and
semantics of PNTs. Then, we define equivalence of PNTs and examine the connection
between PNTs and FSTs.

3.1 Continuous Concurrent Semirings

A binary operation ¢ on a set S defines a binary relationon Sviaa <g b:<adb=>b.If
@ is idempotent, associative, and commutative, then this relation is reflexive, transitive,
and antisymmetric, hence a reflexive partial order. Moreover, if S is equipped with the
partial order <g, then Va,b € S: a ®b = sup{a, b}, where the supremum is taken w.r.t.
<a.If (S,®,0) is amonoid, and if T C S is an arbitrary subset, then 7T := Bier t =
sup(T), where the supremum of the empty set is understood to be the neutral element
of the monoid. A semiring (S,®,®,0,1) is called idempotent if @ is idempotent. An
idempotent semiring is called continuous [5] if, for any subset 7" C S, the supremum
is well-defined in S (that means the semiring is complete), and ® distributes over the
supremum from both sides: Vs € S: sQ@P T =P,cr s@t and (BT)Rs =P, o7 [Ds.

240

A bisemiring is a six-tuple . = (S, ®,®,X,0,1), where (S,®,®,0,1) is a semiring
and (S, D, &,G,T) 1s a commutative semiring.2 The binary operation X on the set § is
called S-parallel multiplication. If ® distributes over X from both sides, the bisemiring
is called distributive, if & is idempotent, the bisemiring is called idempotent, and if
both semirings (S, ®,®,0,1) and (S,®,X,0,1) are continuous, the bisemiring is called
continuous. According to [13], a concurrent semiring is an idempotent bisemiring (S,
®,®,K,0,1) satisfying

Va,b,c,d€S: (aXb)®(cXd)<s (a®c)X(b®d). (CS)

Concurrent semirings will be used to define the weight of a run of a Petri net trans-
ducer. ® will be used to model the composition of weights of a sequence of runs (as in
the case of FSTs) and X models the composition of weights of concurrent runs. There-
fore, X is required to be commutative. The unit 1 can be thought of as the weight of the
empty run (the analogue of the empty word). It is shared by ® and X, since the sequen-
tial or concurrent execution of a run r and the empty run does not change r. Using ®
and X, the weight of a sequential parallel run can be defined in the standard way.

Idempotence of & induces a natural order on the set of weights. We will define the
weight of a general run in a natural way as the supremum of all weights of its sequential
parallel extensions w.r.t. this order. Condition (CS) will ensure that runs with fewer
dependencies have bigger weights.

Example 1. If . = (S,®,®,0,1) is an idempotent semiring such that <g is a total
order and 1 is maximal w.r.t. to that order, then we have . = (S, max, ®,0,1), and (S,
max, ®,min, 0, 1) is a concurrent semiring extending ..

If & = (8,9, ®,6,T) is an idempotent and commutative semiring, then the doubled
semiring (S,®,®,®,0,1) is a concurrent semiring extending ..

Example 2. Based on the well-known Viterbi semiring (|0,1],max,-,0, 1) representing
probabilities of actions, the structure ¥ := ([0, 1], max, -, min, 0, 1) yields a continuous
concurrent semiring.

The structure .7 := ([0,0], min, 4+, max,,0) is a continuous concurrent semiring.
It is based on the well-known tropical semiring ([0,o]|, min, 4,0, 0) representing exe-
cution times of actions.

Note that #" and .7 are isomorphic, e.g. an isomorphism is given by t = —log(v).
Both concurrent semirings extend a semiring as in the first construction of example 1.

An example of a concurrent semiring, which is not of the above kind, is .7 :=
({—e0} U[0, o[, max, +,X, —e0,0), where aX b := a + b + min(a,b). It is based on the
arctic semiring.

3.2 Weighted LLPOs

We use LPOs extended by weights from a bisemiring to model runs of PNTs. By defin-
ition, a weighted LPO (WLPO) over a alphabet ./ and a bisemiring . = (§,®,®,X,

2 In particular, both multiplications share the same unit. A similar algebraic structure without
requiring commutativity of the second semiring is defined in [4], where it is called Q-Algebra
and coined for application in quality management. In [14] a slightly different notion of bisemi-
rings is used where parallel multiplication may miss a unit.

241

0,1) is a quadruple (V, <.l,v) such that (V, <,l) is an LPO over ./ and v : V — S is an
additional weight function. We use all notions introduced for LPOs also for WLPOs.

The weight of sp-WLPOs can be defined similar as in [14] for runs of so called
weighted branching automata. The total weight of an sp-WLPO is computed from the
weights of their nodes through applying ® to the sequential product and X to the parallel
product of sub-WLPOs.

Definition 1 (Weight of sp-WLPOSs). The weight o(wlpo) of an sp-WLPO wlpo =
(V,<,1,v) over a bisemiring is defined inductively as follows:

— IfV ={v}, then o(wlpo) = v(v).
— If wlpo = wipo| ;wipo,, then ®(wipo) = w(wlpo;) ® o (wlpo,).
— If wipo = wipo, || wipo,, then @(wlpo) = @ (wlpo,) X w(wlpo,).

This is the standard technique to define weights of sequential parallel LPOs [14]
with weights coming from a bisemiring. In particular, the given weight of sp-WLPOs
is well-defined, since the set of sp-WLPOs as well as the sub-structure (S, ®,X) of a
bisemiring (S, ®, ®,X,0, 1) form an sp-algebra admitting an sp-algebra homomorphism
from the set of sp-WLPOs into the bisemiring. Note that for WLPOs wipo = (V, <
,1,v) with underlying total order V = {v; < --- < v, } the weights computes ®(wlpo) =

", v(vi), i.e. the above definition is compatible with the weight definition of paths of
an FST. We now propose a weight definition for general WLPOs.

Definition 2 (Sequential-Parallel Weight of WLPOs). Let wipo = (V,<,l,®) be a
WLPO. Then its sp-weight is defined by @sp(wlpo) = @1,y csp(wipo) @(WIpo').

If the bisemiring of weights is idempotent, then the sp-weight of a WLPO-run equals
the maximal weight of its sequential parallel extensions. As a fundamental result we
will show that condition (CS) of concurrent semirings are the minimal requirement on
idempotent bisemirings such that less restrictive weighted LPOs yield bigger weights.
Moreover, the use of concurrent semirings ensures that the sp-weight of WLPOs can be
computed in a modular way using bisemiring-operations.

Theorem 1. Let 7 be an alphabet and .¥ = (S,®,®,X,0,1) an idempotent bisemi-
ring. Then the following assertions are equivalent:

(A) If uy,uy are sp-WLPOs over </ and . and if uy is an extension of uy, then
C()(l/ll) S@ (D(Ltz)
(B) . is a concurrent semiring.

Proof. (A) = (B): Let .# be the set of sets of sp-LPOs over &/ which are ideals as
introduced by Gischer [10] as extension-closed sets of sp-LPOs. As proved by Gischer,
(&,U,5,]l1,0,{€}) is a concurrent semiring, where A ||; B is defined as the least ideal
containing A || B and € is the empty LPO. We show that the mapping @ : .# — S defined
by w(A) = B ,c4 ®(a) is a bisemiring-homomorphism. Let A, B € .#, then

- w(AUB) = w(A) ® o(B), since @ is assumed to be idempotent, commutative and
associative.

242

- 0(A;B) = 0(A) ® o(B) follows from w(a;b) = w(a) ® w(b) fora € A,b € B and
because & distributes over @.

— We claim that w(A ||; B) = @ ca pep @(a || b) = ©(A) X w(B). The second equa-
tion follows from w(a || b) = w(a) K w(b) for a € A,b € B and because X distrib-
utes over ®. The first equation follows from (A), since each LPO in A ||; B is an
extension of an LPO of the form « || b witha € A,b € B.

This proves that . also is a concurrent semiring.

(B) = (A): Let u; be a proper extension of u, such that u,u, are non-isomorphic.
Gischer shows in [10] in the Interpolation Lemma that the least ideal containing u# can
be transformed in finitely many steps into the least ideal containing u; using one of the
concurrent semiring equations w.r.t. the operations of (.#,U,;,|/1,0,{€}) in each step,
where at least once the equation (a ||; b);(c || d) <y (a;c) || (b;d) (Which corresponds
to condition (CS) of concurrent semirings) is applied. Denote u; = (V;, <;,[;) and equip
the nodes of each u; with the weight function @ yielding WLPOs. Then both u; =
(Vi,<i, @) are sp-LPOs over §. Since .7 is a concurrent semiring, it is now possible to
transform u into u using the same sequence of concurrent semiring equations as for
the transformation of u; into u,, but now w.r.t. the concurrent semiring operations of
<. We deduce o(u;) = u} <g uy = ©(uy). 0

We deduce that the sp-weight can be computed in a modular way.
Lemma 1. The following holds for LPOs lpo, and lpo,:

(i) SP(Ipoy;Ipoy) = {Ipo ;Ipo, | po € SP(Ipo,),lpo; € SP(Ipoy)},
(ii) SPmin(lpoy || Ipoy) = {lpoy || Ipos | Ipoy € SPuin(Ipoy).lpoy € SPmin(lpoy)}.

Proof. Straightforward observation. O

Theorem 2. Let </ be an alphabet and . = (S,®,®,X,0,1) a concurrent semiring.
Then the following assertions hold for weighted LPOs wlpo,,wlpo, over &/ and .7 :

(©) wsp(wipoy ;wlpoy) = wsp(wlpoy) @ @sp(Wipoy).
(D) g, (wipoy || wipoy) = @gp(wipo,) X wy,(wipo,).

Proof. ad (C): We apply distributivity of ® over & in the formula given in definition 2,
and use the set equation (1) of the previous lemma.

ad (D): We claim ay,(wlpoy || wlpos) = @,yipolesp i (wipo) @(WIPo1) B o(wipoy).
This equation follows from (A) in the previous theorem using the set equation (ii) of
the previous lemma in the formula given in definition 2. The statement follows now
from distributivity of X over . 0

Example 3. Consider the concurrent semiring #* defined in subsection 3.1. The de-
cision for min as parallel multiplication can be interpreted as follows: If wlpo = wipo, ||
wlpo,, then wilpo, and wipo, are both necessary but independent parts of the run wipo
of a concurrent system and the probability of wipo cannot be better than the probability
of one of its parts. In [25] we give a justification for that choice of min in the context of
semantic dialogue modelling.

Consider the concurrent semiring .7 defined in subsection 3.1. It can be used to
compute the minimal execution time of a run given by an arbitrary WLPO wipo of a
concurrent system.

243

3.3 Syntax of Petri Net Transducers

A PNT is a Petri net which, for every transition occurrence, may read a symbol x from
an input alphabet X~ and may print a symbol y from an output alphabet A. Additionally,
a weight s from a bisemiring is assigned to each transition. If no input symbol should
be read or no output symbol should be printed, we use the empty word symbol € as
annotation. We use the basic Petri net class of PT-nets to define PNTs.

Definition 3 (Petl'i_Net Transducer). A Petri net transducer (PNT) over a bisemiring
S =(S,8,®,K,0,1) is a tuple N = (P,T,F,W,p;,pr,X,0,A,0,®), where

— (P, T,F,W) is a marked PT-net (called the underlying PT-net), p; € P is the source
place satisfying *p; = 0 and pr € P is the sink place satisfying py. =0,

— X is a set of input symbols and 6 : T — X U {¢€} is the input mapping,

— A is a set of output symbols and & : T — A U{e} is the output mapping.

— w: T — S is the weight function.

We call the marking my = pj the initial marking and mr = pr the final marking. A PNT

is called clean if the final marking is the only reachable marking m with m(pg) > 0.
A WLPO wlpo = (V,<,l,v) over T is a weighted LPO-run of N if the underlying

LPO Ipo = (V,<,l) is an LPO-run of N with mg 0 mp and ifv(v) = o(l(v))). We
denote by WLPO(N) the set of all weighted LPO-runs of N.

The cleanness property is similar to cleanness of Boxes [2] or soundness of workflow
nets [22] and ensures that PNT semantics are closed under (sequential) product and
closure. The final marking can be reached only from a finite set of reachable markings
[12]. There are some obvious differences to the syntax of FSTs. There is only one initial
state instead of multiple initial states, one final state instead of multiple final states and
there are no initial and final weight functions. It is obvious that these restrictions are
no real limitation. Figure 1 shows examples of PNTs, where an input symbol x, output
symbol y and weight s are annotated to a transition in the form x:y/s, and annotations
of the form g:€/1 are not shown.

3.4 Semantics of Petri Net Transducers

Considering non-sequential semantics of Petri nets, a PNT can be used to translate a
partial language into another partial language, where so called input words are related
to so called output words. Input and output words are defined as LPOs (V, <,l) with a
labelling function [: V — o7 U {e} for some input or output alphabet 7. Such LPOs
we call e-LPOs. For each €-LPO (V, <,l) we construct the corresponding e-free LPO
(W, < |wxw,llw), W =V \I~(¢) by deleting £-labelled nodes together with their ad-
jacent edges. Since partial orders are transitive, this does not change the order between
the remaining nodes.

Definition 4 (Input and Output Labels of Runs). Let N = (P, T,F,W,p;,pr,%,0,A,
0,w) be a PNT and let wipo = (V,<,l,v) € WLPO(N). The input label of wipo is the
LPO o (wlpo) corresponding to the e-LPO (V,<, o ol). The output label of wipo is the
LPO &(wlpo) corresponding to the e-LPO (V,<,001).

244

For LPOs u over X and v over A, we denote by WLPO(N ,u) the subset of all WLPOs
wlpo from WLPO(N) with input label 6(wilpo) = u, and by WLPO(N,u,v) the subset
of all WLPOs from WLPO(N,u) with output label &(wlpo) = v.

The input language L;(N) of N is the set of all input labels of weighted LPO-runs.
Its elements are called input words. The output language Lo(N) of N is the set of all
output labels of weighted LPO-runs. Its elements are called output words.

The language L(N) of N is the set of all pairs of LPOs (u,v) over £ X A with
WLPO(N,u,v) # 0.

Note that the input and output language of a PNT N are extension closed, since
WLPO(N) is extension closed. The output weight of a PNT assigned to all pairs of
LPOs u over X and v over A is based on weights of its WLPO-runs.

Definition 5 (Output Weight of PNTs). Let N = (I_D, T,F.W.p1.pr.X,0,A, 0,w) bea
PNT over a concurrent semiring . = (S,®,®,X,0,1), u be an LPO over X and v be
an LPO over A. The output weight N(u,v) is defined by

N(u,v) = @ sy (wlpo),
wlpo€ WLPO(N ,u,v)

when this sum is well-defined in S (note that the sum may be infinite). We set N(u,v) =0
if WLPO(N,u,v) = 0.

Note that the output weight equals the supremum of all weights of corresponding
runs, since & is idempotent. If the concurrent semiring is continuous, the supremum
always exists in S [5]. From the considerations in subsection 3.2 we immediately deduce
that it is enough to consider minimal weighted sp-runs in the defining sum of the output
weight using condition (CS) of concurrent semirings.

Corollary 1. Let N = (P,T,F,W,p;,pr,2,0,A,6,0) be a PNT over a concurrent
semiring . = (S,9,®,X,0,1), u be an LPO over X and v be an LPO over A. Then

N(14,v) = @ ruipocWLP0y (N) wipo €5P, (wipo) @(WIPO"), when this sum is well-defined
in S, where WLPO,;, (+) is the subset of all minimal WLPOs in WLPO(-).

3.5 Equivalent PNTs

Concerning PNT semantics, only the input output behaviour is relevant. Since trans-
itions also may have empty input and/or empty output, there are always (infinitely)
many PNTs having the same semantics. For practical application, such PNTs are equi-
valent. We introduce equivalent PNTs lifting the corresponding notion for FSTs.

Definition 6 (Equivalent PNTs). Let N|,N; be two PNTs.

(a) Ny and Ny are called structure equivalent if L(Ny) = L(N).

(b) If N1 and N, are structure equivalent, then they are called output equivalent if
Ni(u,v) = Ny(u,v) for all (u,v) € L(Ny) = L(N,).

245

Two structure equivalent PNTs perform the same translation between input and out-
put words, but the weights of these translations may be different. Two output equival-
ent PNTs perform the same weighted translation between input and output words, but
the distribution of weights within WLPO-runs may be different. Output equivalence is
usually used in the context of FSTs in order to push weights along paths [17]. Weight
pushing leads to output equivalent FSTs which allow for more efficient FST-algorithms.

Example 4. In the following, consider a fixed concurrent semiring serving as the set of
weights. We denote by N(a,b,w) the clean PNT consisting of no other places than the
source and sink place and exactly one transition with input symbol a, output symbol b
and weight w connecting the source with the sink place. Then the following PNTs are
structure equivalent: Ny = N(a,b,w), N = N(a,&,u) @ N(g,b,v) and N3 = N(a,&,x) X
N(g,b,y). They are output equivalent if w = u ® v = xXy. The following PNTs in gen-
eral also are output equivalent: N = N(a,&,u) @ N(g,b,v), Ns = N(a,e,v) @ N(&,b,u)
and Ng = N(a,e,u®v) @ N(g,b,1).

Since not each semiring can be extended to a concurrent semiring, not each FST can
be represented by an equivalent PNT. On the other side, each finite automaton can be
represented by a special PT-net, a so called state machine, having the same set of runs.
This means, if a semiring can be extended to a concurrent semiring, then an FST over
this semiring is output equivalent to a PNT. Given an FST over a semiring satisfying
the preconditions in one of the cases considered in example 1, the constructions given
in the example may be used to define an equivalent PNT:

Proposition 1. Let FSTT = (X,A,Q,1,F,E,A,p) be a weighted FST over a semiring
S = (S,®,®,0,1) satisfying one of the following conditions: (1) . is idempotent and
commutative, (2) . is idempotent such that <g is a total order and 1 is maximal
w.r.t. to that order. Then there isa PNTN = (P, T,F,W,p;, pr,X,0,A,0,®) satisfying
T(I,u,v,F) = N(u,v) for each pair of words (u,v) € X* x A*,

4 Composition of Petri Net Transducers

In practical applications, it is important to be able to create complex transducers through
composition of simple ones. To this end we lift the FST standard composition opera-
tions of union, product, closure and parallel product to clean PNTs (the parallel product
is a new operation which cannot be applied to FSTs but is natural in case of PNTs).
Cleanness ensures that runs always terminate properly and is shown to be preserved by
the above operations. Moreover, we show that these composition operations preserve
equivalence of PNTs.

Finally, we consider the central transducer composition operation of language com-
position. While the adaption of the previously mentioned composition operations for
PNTs is more or less straightforward, there are several different possible adaptions of
FST language composition.

In the following we consider a fixed concurrent semiring .’ = (S, D, ®, X,0, T).

246

4.1 Union, Sequential Product, Closure, Parallel Product

In this subsection we briefly lift the standard FST composition operations of union, (se-
quential) product and closure to clean PNTs and additionally define the parallel product
of clean PNTs. All definitions and constructions are in the spirit of the FST case and
rather straightforward. For each operation, first a functional definition is given defining
the output weight of the composed PNT based on the output weights of the original
PNTs and bisemiring-operations and generalising the corresponding FST definitions.
Then an effective construction is given, showing that there is a composed PNT hav-
ing the intended output weight. The constructions are illustrated in Figure 1, where for
a compact presentation input symbols, output symbols and weights of transitions are
omitted if possible. For the correspondence of the functional definitions and the con-
structions essentially theorem 2 can be used.

The sum (or union) N; & N, of two PNTs N; and N, over . with the same input
alphabet ¥ and output alphabet A is defined as a PNT over . in such a way that for
each pair of LPOs u over X and v over A:

(N1 @Nz)(u,v) =N (u,v) GBNQ(M,V).

The sum N = N & N, can be constructed in a straightforward way as the union of N;
and N, together with additional new source and sink places and connecting transitions
having empty input symbol, empty output symbol and weight 1. The construction yields
that WLPO(N; & N,) equals WLPO(N) U WLPO(N,) if events labelled by additional
transitions are omitted.

The product (concatenation) Ny @ N, of two PNTs N; and N, over . with the same
input alphabet X and output alphabet A is defined as a PNT over . in such a way that
for each pair of LPOs u over X and v over A:

(N @N2)(u,v) = . Ni(u1,v1) @ Na(uz,v2).

U=uj i unp,v=vy ;v

The product of n > 0 instances of a PNT N we denote by N”. By convention N = .7,
where .# is the PNT satisfying .# (u,v) = 1 if u and v are both the empty LPO (0,0, 0)
and .7 (u,v) = 0 otherwise.

If N; is clean, the product N = N1 ® N, can be constructed as the union of N; and N,
together with a new transition having empty input symbol, empty output symbol and
weight 1 and connecting the sink place of N; with the source place of N,. The construc-
tion yields that WLPO(N; ® N,) equals WLPO(N;); WLPO(N,) if events labelled by
additional transitions are omitted.

The closure N* of a PNT N over . with input alphabet X and output alphabet A is
defined as PNT over . in such a way that for each pair of LPOs u over £ and v over A:

(u,v) = @N" u,v)

If N is clean, @), | N"(u,v) can be constructed by adding a transition with empty
input label, empty output label and weight 1, which connects the sink place of N with

247

the source place of N and by adding additional new source and sink places and con-
necting transitions. Then N is the union of the resulting PNT and N°. The construction
yields that WLPO(N*) equals WLPO(N)* if events labelled by additional transitions
are omitted.

a:x/0.7
Oxll
e @:% o1
s
b:y/0.8
a:x/0.7 b:y/0.8

MMy @O OO

Fig. 1. Illustration of the union, (sequential) product, closure and parallel product of PNTs N =
N(a,x,.7) and Ny = N(b,y, .8) over ¥

The parallel product Ny XN, of two PNTs N; and N, over . with the same input
alphabet X and output alphabet A is defined as a PNT over . in such a way that for
each pair of LPOs « over 2 and v over A:

(N1|Z|N2)(M,V) = @ Nl(ul,v1)|Z|N2(u2,v2).

u=uy||up,v=v1|[va

The parallel product N = N; XN, can be constructed as the union of Ny and N,
together with additional new source and sink places and appropriate connecting trans-
itions having empty input symbol, empty output symbol and weight 1. The construction
yields that WLPO(N; X N,) equals WLPO(N,) || WLPO(N;) if events labelled by addi-
tional transitions are omitted.

Theorem 3 (Composition Operations Preserve Cleanness). Let N| and N, be clean
PNTs. Then the PNTs N1 © N2, N1 ® Na, Ni and N1 XN, are also clean.

Proof. Clear by construction. O

An important application of equivalence in practise is the transformation of a PNT
into an equivalent and simpler PNT. A central technique to do this is to replace parts of
a complex composed PNT by equivalent parts. This technique requires that equivalence
is consistent with composition operations.

Theorem 4 (Composition Operations Preserve Equivalence). If N;,N| and N,,N},
are (structure, output) equivalent, then also N = Ny op N, and N' = N{ op N} with op €
{®,®,X}, as well as N = N{ and N' = (N})* are (structure, output) equivalent.

Proof. (sketch) As previously argued, in each case the set WLPO(N,u,v) can be con-
structed from the sets WLPO(Ny,u,v) and WLPO(N,,u,v) using some additional trans-
itions which do not influence input label, output label and weight. Moreover, N(u,v)
can be computed from N; (u,v) and N, (u,v) through bisemiring operations.

248

We deduce that WLPO(N,u,v) # 0 < WLPO(N',u,v) # 0, if WLPO(N;,u,v) # 0 <
WLPO(N!,u,v) # 0 for i = 1,2. If additionally N;(u,v) = N!(u,v) for i = 1,2, then also
N(u,v) =N'(u,v). 0

4.2 Language Composition

In this subsection we present possibilities for lifting language composition of FSTs
to PNTs. Basically, there are two possibilities for such a lifting. The first one is to
generalise the construction from the FST case to the PNT case. As it will turn out,
such a construction permits a functional definition only in the restricted case of doubled
semirings. The second one is to adapt the functional definition from the FST case to
the PNT case. Unfortunately, a concrete construction is possible only w.r.t. "weak”
adaptions resp. in restricted cases.

Throughout this subsection we consider a PNT Ny, resp. FST Ty, over . with input
alphabet X; and output alphabet A; and a PNT N, resp. FST T3, over . with input
alphabet 2, = A; and output alphabet A,. In the FST case, the language composition
T\ oT, of Ty and 7> is essentially constructed from the Cartesian product of the two sets
of states, the transitions of 77 without output, the transitions of 7, without input and
transitions which are merged from a transition #; of 77 and a transition #, of 7, such
that the output of #; equals the input of 7, where the weights of #; and #, are multiplied.
Finally, transitions which are not merged are put into an arbitrary but fixed sequence,
i.e. weights are sequentially multiplied. This way, if ® is commutative, 7} o T, yields
the functional equation

(Ty o Tr)(u,w) = @Tl(u,v) ® Tr(v,w),

where the sum runs over all words v over 2, = A; representing both output labels of
paths of 77 and input labels of paths of 75.

We start with a generalisation of the FST construction to PNTs. The FST construc-
tion corresponds to the parallel product of N; and N, and merging each transition #; from
N; with each transition 7, from N, satisfying 6(¢;) = o(2) to a transition 7 with input
symbol o(¢) = o(t1) and output symbol 6(7) = 6(1,), weight (1) = o(t;) ® o(t;) and
connections °t = °t; + °f, and * =] +13. Moreover, we keep all transitions of N;
having empty output symbol, as well as all transitions of N, having empty input symbol
(with unchanged input symbols, output symbols, weights and connections). All other
transitions of N; or N, are omitted. We denote the constructed PNT by N;[®]|N,. If
X is used to define the weight of merged transitions, we denote the resulting PNT by
N [X]N,. Figure 2 illustrates the construction.

Theorem 5. The PNT Ny[-|N, satisfies the following properties:

(i) If Ny and N, are clean, then also Ny [-]N; is clean.

(ii) If 7 is the doubled semiring, then (Ni[Q]|N2)(u,w) = @, N;(u,v) @ Na(v,w),
where the sum runs over all LPOs v over Xy = A representing output labels
of weighted LPO-runs of N\ and input labels of weighted LPO-runs of N;. In
particular Ni[®|N, generalises FST language composition.

249

(iii) If (N1[®]N2)(u,w) = @, Ni(u,v) op N2(v,w), where the sum runs over all LPOs
v over X = Ay representing output labels of weighted LPO-runs of N1 and input
labels of weighted LPO-runs of N> and op is a semiring operation, then op = &
and . is the doubled semiring.

(iv) If Ni,N{ and Ny,N} are structure equivalent, then also N = Ni[-|N; and N' =
N{[-]N} are structure equivalent.

(v) If N1,N{ and Ny, N} are output equivalent, then N = Ni[-]N, and N' = N{[-]N},
need not be output equivalent.

Proof. (sketch)

ad (i): By construction, every reachable marking m of N;[-]N, — except for the initial
and final marking — is of the form m = m; + m, for some reachable marking m; of
Nj and some reachable marking m, of N,. Since both Ni and N, are clean the only
reachable marking which marks the sink places p; r and py r of Ny and N; is py r +
p2,r- The only transition step which can occur in this marking leads to the new sink
place of Ny[-|N,. It follows that N [-|N; is clean.

ad (ii): Follows from wy,(wlpo) = Q.cy v(x) for WLPOs wipo = (V,<,1,v).

ad (iii): Consider Ny = N(x,y,a) X N(u,v,b) and Ny = N(y,z,¢) K N(v,w,d). Then
(@a@c)M(b@d)=(M[RIN)(x [u,z || w) =Ni(x [u,y [v)opNa(y || vz [| w) = (a X
b)op (cXd). Putting b =d = 1 yields aopc =a®c. Puttinga=d = 1 yields h®@ ¢ =
bXc.

ad (iv): Follows from L(N{[-]N2) = {(u,w) | v : (u,v) € L(Ny),(v,w) € L(N2)}.
This can be seen as follows: If wlpo € L(N;[-|N2,u,w), then the restriction to nodes
which are labelled by transitions from »; and by merged transitions and the relabelling
of merged transition labels by corresponding transition labels from »; yields WLPO-
runs wipo; € L(Ny,u,v;) and wipo, € L(N,,v,,w) with vi = v,. If on the other side
wlpo; € L(Ny,u,v) and wilpo, € L(N,,v,w), then wipo € L(N;[-]N2,u,w) can be con-
structed from the union of wipo; and wipo, through merging events corresponding to
merged transitions of Ni[-|N;.

ad (v): Consider the PNTs N; = N(a,x,.4)XIN(b,y,.8), N =N(a,x,.8) XN(b,y, 4)
and N, = N(x,r,.5)XIN(y,s. 1) over the concurrent semiring . Then N; and Nj are
output equivalent, but N; [®]N, and N{[®]N, are not. In a similar way, using sequential
composition of PNTs, a counterexample for Ny [X/|N, can be found. g

Remark 1. In case of part (ii) of the previous theorem the construction for the language
composition of two PNTs is different and much simpler than the construction in the
case of FSTs. In particular, if N; and N, are PNTs representing FSTs 77 and 7>, then
Ni[®]N, does not represent an FST, since it is no state machine. Namely, transitions
of N; with empty output and transitions of N, with empty input may be concurrent.
Nevertheless Nj[®]N, is output equivalent to the PNT representing 7} o 7> on pairs of
sequences (u,v).

We now consider possible adaptions of the functional definition of FST language
composition. A direct adaption yields

(N1 oNo)(u,w) = EB Ni(u,v) @ Na(v,w). (1)
vELQ(N1)NLi(N2)

250
€:2/0.5

t
O O —

a:x/0.6 N3[®]N4 o .
x:0/0.7 a:b/0.42

Ny @——{—0O

Fig. 2. Language composition for N3 = N(x,b,.6)XIN(€,z,.5) and Ny = N(a,x,.7) over ¥

Our belief is, that there is no construction satisfying this functional equation within
the considered framework of PT-net based PNTs over general concurrent semirings. A
proof of such a result is topic of further research, but there are constructions for some
relaxations of equation 1.

Theorem 6. Ir holds:

(l) There is a PNT N with N(Lt, W) = @v,v’EL()(Nl)ﬂL[(Nz):l(v):l(v’) Nl (Lt, V) ®N2(V’, W),
where 1(v) is the multiset of transition labels of an LPO v. The construction of N
preserves structure and output equivalence, but not cleanness.

(ii) If the state graph of N[-]N; is acyclic, then there is a PNT N satisfying N(u,w) =
Do Lo (V)L (Ny)v<v v < N1 (,v) @ Na (V' w), where v <V’ means that v is an
extension of V'. The construction of N preserves structure and output equivalence
and cleanness. In particular N generalises FST language composition.

Proof. (sketch)

The basic idea for the constructions is to consider the sequential product of two PNTs
N{ and N, such that Lo(N]) = Lo(N1) NL;(N,) and Nj behaves like N; on its output
words, and N}, has similar properties. The sequential product of N| and N satisfies

(N} @ N3) (u, w) = EB Ny (u,v) @ N (V,w).
vy €Lo (N1)NLi (N2)

It is easy to observe that such N and N} both can be constructed from N;[-] N2,
such that N| and N} have isomorphic underlying PT-nets, but different input and output
symbols and weights, such that N| reads u but writes nothing and N}, reads nothing but
writes w w.r.t. the same LPO-run. Since 1 is the unit of both multiplications, this can be
done for Nj (and similar for N}) as follows:

— Each transition gets € as output symbol.
— Each transition r merged from #; of Ny and #, of N, gets the weight of ;.
— All transitions coming from N, get weight 1.

ad (i): Through adding additional places connecting transitions of Nj with their iso-
morphic images in N} it is possible to restrict the behaviour in such a way that after
executing an LPO-run of N{ only LPO-runs of N having the same set of transition oc-
currences can be executed. If the state graph of N [-| N, contains cycles, the construction

251

does not preserve cleanness, since additional places may be unbounded. The preserva-
tion of equivalences follows since L(N) can be constructed from L(N;) and L(N,) and
N(u,w) is computed from Ny (u,v) and N>(v',w) through bisemiring operations.
ad (i1): In the special case of an acyclic state graph, it is possible to add transition
copies and places ensuring that transitions, which are in structural conflict in N] and
which are executed in a specific order within an LPO-run of N7, are executed in the
same order afterwards in Né. Moreover, cleanness is preserved. The preservation of
equivalences follows similar to (i).
Ol

Remark 2. Note that [(v) = [(V') but v # V' is possible. For example, the PNT (N(a,b,
®) & N(c,d,v))* allows the outputs bd and db. This means, there are different LPO-
runs of a PNT with equal sets of transition occurrences if there are transitions which are
in structural conflict, but occur together within an LPO-run due to cycles in the PNT.
The equation mentioned in property (i) of theorem 6 is not a generalisation of the FST
case.

5 Conclusion and Outlook

In this paper we introduced weighted Petri net transducers for the translation of partial
languages. As a central result we have shown that the used weight structure of concur-
rent semirings is the least restrictive idempotent bisemiring structure such that partial
words with fewer dependencies have bigger weights. Moreover, we defined composi-
tion operations of union, product, closure, parallel product and language composition
on PNTs which preserve equivalence of PNTs. The output weights of a composed PNT
can be computed from the output weights of its components using bisemiring opera-
tions, where in the case of language composition such a compositional computation is
possible only in restricted cases.

There are important further steps in several directions. Due to lack of space we only
mention here that there are still several central aspects of the framework of FSTs which
need to be examined also w.r.t. PNTs, for example additional composition operations
(inversion, reversal), optimisation algorithms (€-elimination, weight-pushing) and on-
the-fly simulation algorithms.

References

Azéma, P., Balbo, G. (eds.): ICATPN 1997. LNCS, vol. 1248. Springer, Heidelberg (1997)
. Best, E., Devillers, R.R., Hall, J.G.: The box calculus: a new causal algebra with multi-label
communication. In: Rozenberg [19], pp. 21-69

3. Boudol, G., Castellani, I.: On the semantics of concurrency: Partial orders and transition
systems. In: Ehrig, H., Levi, G., Montanari, U. (eds.) CAAP 1987 and TAPSOFT 1987.
LNCS, vol. 249, pp. 123-137. Springer, Heidelberg (1987)

4. Chothia, T., Klejin, J.: Q-automata: Modelling the resource usage of concurrent components.
Electronic Notes in Theoretical Computer Science 175(175), 153-167 (2007)

5. Droste, M., Kuich, W.: Semirings and Formal Power Series. In: Droste, et al. (eds.) [6], ch.1,

pp- 3-28 (2009)

N =

252

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. Springer (2009)

Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Miiller, V.C. (eds.): COST 2102.
LNCS, vol. 7403. Springer, Heidelberg (2012)

Fichtner, I., Kuske, D., Meinecke, 1.: Traces, Series-Parallel Posets, and Pictures: A Weighted
Study. In: Droste, et al. (eds.) [6], ch. 10, pp. 405-452 (2009)

Fiillop, Z., Vogler, H.: Weighted Tree Automata and Tree Transducers. In: Droste, et al. (eds.)
[6], ch. 9, pp. 313—404 (2009)

Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61, 199-224
(1988)

Grabowski, J.: On Partial Languages. Fundamenta Informaticae 4(2), 428-498 (1981)
Hack, M.: Petri net languages. Technical Report Memo 124, computation structures group,
massachusetts institute of technology (1975)

Hoare, T., Moller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its founda-
tions. The Journal of Logic and Algebraic Programming 80, 266-296 (2011)

Kuske, D., Meinecke, I.: Branching automata with costs - a way of reflecting parallelism in
costs. Theoretical Computer Science 328, 53-75 (2004)

Lorenz, R., Huber, M.: Petri net transducers in semantic dialogue modelling. In: Proceedings
of “Elektronische Sprachsignalverarbeitung (ESSV)". Studientexte zur Sprachkommunika-
tion, vol. 64, pp. 286-297 (2012)

Lorenz, R., Huber, M.: Realizing the Translation of Utterances into Meanings by Petri Net
Transducers. In: Proceedings of “Elektronische Sprachsignalverarbeitung (ESSV)". Studien-
texte zur Sprachkommunikation, vol. 65 (2013)

Mohri, M.: Weighted Automata Algorithms. In: Droste, et al. (eds.) [6], ch. 6, pp. 213-254
(2009)

Pratt, V.: Modelling Concurrency with Partial Orders. Int. Journal of Parallel Program-
ming 15, 33-71 (1986)

Rozenberg, G. (ed.): Advances in Petri Nets 1992, The DEMON Project. Springer (1992)
StraBBner, D.: Prototypische Implementierung von Petrinetz-Transduktoren mit SNAKES.
Bachelor thesis, Augsburg University (2013)

van Biljon, W.R.: Extending Petri nets for specifying man-machine dialogues. Int. J. Man-
Mach. Stud. 28(4), 437-455 (1988)

van der Aalst, W.M.P.: Verification of workflow nets. In: Azéa, Balbo (eds.) [1], pp. 407426
Wang, F.-Y., Mittmann, M., Saridis, G.N.: Coordination specification for CIRSSE robotic
platform system using Petri net transducers. Journal of Intelligent and Robotic Systems 9,
209-233 (1994)

Wang, F.-Y., Saridis, G.N.: A model for coordination of intelligent machines using Petri
nets. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 28—
33. IEEE Comput. Soc. Press (1989)

Wirsching, G., Huber, M., K&lbl, C.: Zur Logik von Bestenlisten in der Dialogmodellier-
ung. In: Proceedings of “Elektronische Sprachsignalverarbeitung (ESSV)". Studientexte zur
Sprachkommunikation, vol. 61, pp. 309-316 (2011)

Wirsching, G., Huber, M., Kolbl, C., Lorenz, R., Romer, R.: Semantic dialogue modeling.
In: Esposito, et al. (eds.) [7], pp. 104113

Wolff, M.: Akustische Mustererkennung. Habilitation (2009)

