Skip to main content

A New Representation of Photoplethysmography Signal

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8491))

Abstract

In this paper, we study the representation of photoplethysmography (PPG) signal based on a finite Gaussian basis. An iterative optimization scheme is developed for the solution of the optimal representation. When we employ a summation of n (n < 8) Gaussian basis to approximate the original PPG signal, we can use a feature vector only including 3n parameters of Gaussian basis to represent the original PPG signal, with almost no losses in geometrical shape. In contrast with a thousand samples in time domain, the proposed method can save a lot of resources in processing, transmitting and storing PPG signal in Body Area Networks (BANs).

Project supported by National Science and Technology Support Program of China (No.2012BAH82F04).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, W., Lei, S., Guo, L., Chen, Y., Pan, M.: Study on conditioning and feature extraction algorithm of photoplethysmography signal for physiological parameters detection. In: Proceedings of the Image and Signal Processing, Shanghai, China, October 15-17 (2011)

    Google Scholar 

  2. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement 28(3), 1–39 (2007)

    Article  Google Scholar 

  3. Kyriacou, P.A., Powell, S., Langford, R.M., Jones, D.P.: Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients. Physiological Measurement 23(8), 533–545 (2002)

    Article  Google Scholar 

  4. Johansson: Neural network for photoplethysmographic respiratory rate monitoring. Medical & Biological Engineering & Computing 41(5), 242–248 (2003)

    Article  Google Scholar 

  5. Binns, S.H., Sisson, D.D., Buoscio, D.A., Schaeffer, D.J.: Doppler Ultrasonographic, Oscillometric Sphygmomanometric, and Photoplethysmographic Techniques for Noninvasive Blood-Pressure Measurement in Anesthetized Cats. Journal of Veterinary Internal Medicine 9(6), 405–414 (1995)

    Article  Google Scholar 

  6. Usman, S.B., Ali, M.A.B., Reaz, M.M.B., Chellapan, K.: Second Derivative of Photoplethysmogram in Estimating Vascular Aging among Diabetic Patients. In: International Conference for Technical Postgraduates, Kuala Lumpur, Malaysia, December 14-15 (2009)

    Google Scholar 

  7. Aldrich, T.K., Moosikasuwan, M., Shah, S.D., Deshpande, K.S.: Length-Normalized Pulse Photoplethysmography: A Noninvasive Method to Measure Blood Hemoglobin, vol. 30(10), pp. 1291–1298 (2002)

    Google Scholar 

  8. Ando, J., Kawarada, A., Shibata, M., Yamakoshi, K., Kamiya, A.: Pressure-volume relationships of finger arteries in healthy subjects and patients with coronary atherosclerosis measured noninvasively by photoelectric plethysmography. Japanese Circulation Journal 55(6), 567–575 (1991)

    Article  Google Scholar 

  9. Quick, C.M., Berger, D.S., Noordergraaf, A.: Constructive and destructive addition of forward and reflected arterial pulse waves. Am. J. Physiol. Heart Circ. Physiol. 280(4), 1519–1527 (2001)

    Google Scholar 

  10. Kelly, R., Hayward, C., Avolio, A., O’Rourke, M.: Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80, 1652–1659 (1989)

    Article  Google Scholar 

  11. Chadwick, R.S., Goldstein, D.S., Keiser, H.R.: Pulse wave model of brachial arterial pressure modulation in aging and hypertension. Am. J. Physiol. Heart Circ. Physiol. 251(1), 1519–1527 (1986)

    Google Scholar 

  12. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Mathematical Methods of Operations Research 51(3), 479–494 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Westwick, D., Kearney, R.E.: Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics. Annals of Biomedical Engineering 29(8), 707–718 (2001)

    Article  Google Scholar 

  14. Osborne, M.R.: Separable least squares, variable projection, and the Gauss-Newton algorithm. ETNA. Electronic Transactions on Numerical Analysis 28(1), 1–15 (2007)

    MATH  MathSciNet  Google Scholar 

  15. Yuanjin, Z., Tay, D.B.H., Lemin, L.: Signal extraction and power spectrum estimation using wavelet transform scale space filtering and Bayes shrinkage. Signal Processing 80(8), 1535–1549 (2000)

    Article  Google Scholar 

  16. Zhao, H., Peng, H., Zhu, J., Li, X.: A New Method of Measuring Blood Pressure Indirectly. Journal of Northeastern University (Natural Science) 33(2), 191–194 (2012)

    Google Scholar 

  17. Xu, J., Zhao, H., Sun, P., Yin, Z.: R&D of a Pulse Oximeter Based on WPAN. Journal of Northeastern University (Natural Science) 27(7), 747–750 (2006)

    Google Scholar 

  18. Toutenburg, H., Shalabh: Prediction of response values in linear regression models from replicated experiments. Statistical Papers 43(3), 423–433 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, D., Zhao, H., Li, S., Zheng, H. (2014). A New Representation of Photoplethysmography Signal. In: Cai, Z., Wang, C., Cheng, S., Wang, H., Gao, H. (eds) Wireless Algorithms, Systems, and Applications. WASA 2014. Lecture Notes in Computer Science, vol 8491. Springer, Cham. https://doi.org/10.1007/978-3-319-07782-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07782-6_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07781-9

  • Online ISBN: 978-3-319-07782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics