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Abstract. Contrast-enhanced magnetic resonance imaging (MRI) has
shown variation in the stroma with distance from the tumor and this
correlates with histological microvessel density. To date, however, con-
ventional diffusion MRI has demonstrated limited sensitivity to these
changes. This study modelled the diffusion signal by intravoxel incoher-
ent motion (IVIM) to obtain parameters related to the vasculature and
tissue diffusion. This revealed a small vascular contribution to the signal
in tumor and peri-tumoral stroma within 8 mm. Monoexponential fitting
performed worse than the IVIM model in tumor and stroma within 8 mm,
but was sufficient in more distal stromal regions where lower microvessel
density is expected. Modelling diffusion MRI by IVIM provided a mea-
sure of vascularity that may complement information from DCE-MRI
and yielded additional information about diffusion in the extravascular
tissue.
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1 Introduction

As breast cancer treatment options increase, tools to predict tumor invasive-
ness and recurrence are needed. Changes in peri-tumoral stroma are potential
markers of outcome. For example, signal enhancement from Dynamic Contrast-
Enhanced Magnetic Resonance Imaging (DCE-MRI) correlates with tumor re-
currence [1] and survival [2]. There is also spatial variation: signal enhancement
ratio becomes less prominent with distance from the tumor, an effect that cor-
relates with microvessel density [3]. However, DCE-MRI signal at low temporal
resolution depends on many physiological parameters, including the microvessel
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density, blood flow, vessel permeability and the extracellular space into which
contrast agent leaks.

Diffusion MRI is also sensitive to the vasculature. The intravoxel incoherent
motion (IVIM) model separates vascular pseudodiffusion from diffusion in the
extravascular tissue and has recently been used to model the diffusion signal
from breast tumors [4, 5], demonstrating a pseudodiffusive contribution to the
signal of 6-10% for malignant tissues. This component was less than 2% in non-
cancerous fibroglandular tissue (FGT), but the regions analysed were in the
contralateral breast or at a distance from the tumor. The peri-tumoral stroma
region remains unexamined by IVIM.

McLaughlin et al. examined the diffusion signal in the peri-tumoral stroma
following taxane treatment with a monoexponential model and measurements at
two b-values [6]. They found a weak correlation between change in tumor volume
and change in monoexponential apparent diffusion coefficient (ADC) from pre-
treatment values. Furthermore, there was no significant difference between ADC
in stroma near (2-5 mm) and far (9-13 mm) from the tumor. This is somehwat
puzzling since microvessel density decreases with distance from the tumor [3]
and the protein content and density of the extracellular matrix also vary. This
may be because ADC lacks specificity to microstructural changes: a decrease
in vascular pseudodiffusion can be compensated for by faster diffusion in the
extravascular space.

The DCE-MRI signal enhancement variations in the peri-tumoral stroma
and the low specificity of monoexponential diffusion measures to vascular effects
suggest that a more complex diffusion model may be needed in the stroma. This
study modelled diffusion MRI data in breast using IVIM to examine vascular
perfusion and tissue diffusion effects in the tumor and the peri-tumoral stroma.
Results were compared to a monoexponential ADC method using the Akaike
Information Criterion (AIC).

2 Methods

2.1 Patients and Data Acquisition

Three pre-chemotherapy patients presenting with breast cancer were imaged on
a 3 T Siemens Trio (Siemens Healthcare, Erlangen) with a 7-channel InVivo
breast coil in compliance with Local Research Ethics Committee approval.
Diffusion data were acquired with a 2D fat-saturated Twice-Refocused Spin
Echo sequence at 5 b-values (50, 100, 200, 400-450 and 800 s/mm?), with at
least one unweighted image. Sequence parameters were: effective repetition time
TReg = 65 ms, echo time TE = 159 ms, 5 averages, in-plane resolution 1.77 x
1.77 mm?, slice thickness 4 mm, field of view 12.7 x 34.0 cm? and 24-34 slices.
DCE-MRI data were acquired with a 3D fat-saturated Spoiled Gradient Re-
called sequence: TR = 3.8 ms, TE = 1.38 ms, 1 average, resolution 1.08 x 1.08
x 0.90 mm?, field of view 35.6 x 38.0 x 14.4 cm3. Patients received 0.1 mmol/kg
body weight Gadoteric acid (Dotarem, Guerbet). Temporal resolution was 49 s,
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but only the subtraction of the baseline image from the two-minute post-contrast
image was used to define the tumor region.

2.2 Registration, Region Selection and Noise Correction

Motion was corrected by non-rigid registration of the unweighted images using
NiftyReg (University College London, UK), a free-form registration implemented
using cubic B-splines [7]. The transformation was then applied to the correspond-
ing diffusion-weighted images in each direction.

Tumors were selected using a region-growing algorithm (MITK segmentation)
on the DCE-MRI subtraction images and verified by a radiologist. These were
transformed to the nearest diffusion-weighted slice and regions of interest (ROIs)
at varying distances from the tumor (0-4, 4-8, 8-12 and 12-16 mm; see Figure 1)
were generated. Each region was adjusted to exclude non-fibroglandular voxels
based on a manual breast contour and decrease in signal of less than 30% from the
50 to 800 s/mm? images. Signal from voxels in each ROI was averaged to obtain
a mean. Non-Gaussian noise was corrected by subtracting a factor dependent
on the local noise [8]. All three diffusion-weighted directions were averaged to
obtain signal for fitting and all unweighted image values were combined to get
a single signal value for b=0 to use for fitting.

2.3 Data Fitting

Data were fitted to two different models: a monoexponential model

S = Spexp(—=b- ADC) , (1)

where Sy is the signal in the absence of diffusion weighting and ADC' is the
apparent diffusion coefficient; and the biexponential IVIM model

S =580 [fpexp(=b-Dp)+ (1 — fp)exp(—=b-Dy)] , (2)

where Sy is as above, f, is the fraction of signal decay from pseudodiffusion, D,
is the pseudodiffusion coefficient and Dy is the tissue diffusion coefficient.

Weighted least squares fits were performed using Python and the scipy op-
timize minimize module with L-BFGS-B minimization. A lower bound of 0 was
used for all parameters and upper bound of 5x the unweighted signal for Sy, no
bound for ADC or D, and 1 for f,. The data have low sensitivity to D, so it
was fixed at 2 x 102 mm?/s similar to previous work [4, 5].

The AIC indicates information lost by fitting while accounting for model
complexity (lower values indicate less loss) and was calculated by

AIC = \? + 2k, (3)

where 2 is the reduced chi-squared and k is the number of fit parameters.

Parameter and AIC values were averaged across slices with visible tumor (n
=2, 5 and 1 for patients 1, 2 and 3 respectively) from all patients. Voxel-by-voxel
maps of the parameters were also generated.



4 C. Bailey et al.

Statistical errors in the fitted parameters were calculated by adjusting one
parameter at a time and re-fitting the remaining parameters until

X221+ 2 F (ny, N — 1, 0.68)| , (4)
N —n,
where x? is the reduced chi-squared from the fit with one fixed parameter, x3 is
the reduced chi-squared from a fit where all parameters vary, n, is the number of
parameters in the fit, N is the number of data points and F is the F distribution
function, calculated here for a 68% confidence interval.

3 Results

Figure 1 shows sample DCE and diffusion-weighted (b=200 s/mm?) images with
the tumor outlined in cyan and the surrounding fibroglandular regions (0-4 mm,
4-8 mm, 8-12 mm and 12-16 mm) in blue and purple. The mean SNR of the
unweighted images was 69 and in the surrounding regions (increasing distance):
40, 42, 38 and 27. In the second patient, regions beyond 0 mm had low SNR and
could not be analysed.

Tumour
0-4 mm

4-8 mm
— 8-12 mm
— 12-16 mm

Fig. 1. (a) The post-contrast DCE and (b) diffusion-weighted (b=200 s/mm? ) images
with the tumor (cyan) and surrounding ROIs of fibroglandular stroma outlined.

Figure 2a shows the fits of the models to the diffusion data for one slice of a
tumor. Residuals are shown in 2b. Monoexponential fits are in solid blue (lines
for the 68% confidence interval of the ADC parameter calculated by Eq. 4 are
dotted) and biexponential fits are in red.

Figure 3 summarizes the parameters (mean +/- SD across the slices from
all patients) from the monoexponential and biexponential fits as a function of
distance from the tumor, as well as the AIC for each fit. Figure 4 shows maps of
the fit parameters through one slice of the tumor volume. The 68% confidence
intervals for the fit parameters in the tumor, given by Eq. 4, were 4% for Sy and
15% for ADC for the monoexponential fit and 6% for Sy, 26% for D;, 86% for
the lower error of f,, and 107% for the upper error of f, for the biexponential
fit. Because the values of f, are relatively small, this translates to a parameter
range of 0.02 - 0.21.
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Fig. 2. Results of data fitting. (a) Signal as b value increases. Monoexponential fits to
the data are in solid blue and biexponential fits are in red. The dotted line shows the
fit using the ADC parameter error for the 68% confidence interval. (b) Residuals.
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Fig. 3. Monoexponential (blue) and IVIM (red) fit parameters (a) ADC and D, in
tumor and stromal regions and (b) fraction of pseudodiffusive signal (IVIM only). (c)
AIC. Bar graphs mean +/- SD for all patients, all tumor-containing slices.

a) ADC (x10~* mm? /s) b) D, (x107* mm?/s)

Fig. 4. Maps of fit parameters. (a) ADC from the monoexponential fit, (b) D; from
IVIM and (c) fp from IVIM
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4 Discussion

For peri-tumoral stroma within 8 mm of the tumor, IVIM provided a better fit
to the diffusion data, shown by the lower and comparable AICs in this region,
as well as the residuals (blue points in Figure 2b), which were consistently below
zero for b-values of 100-200 s/mm? and then rose above zero. Residuals for the
IVIM fit were more evenly distributed. IVIM did not add significant information
in more distal stroma, however.

The values of the diffusion coeffecient D; = (1.4 +/- 0.2) x 10 mm? /s and
the pseudodiffusion fraction f, = 0.10 +/- 0.03 in the tumors themselves agreed
with previous IVIM results: D; = (1.3 +/- 0.3) x 10 mm?/s and f, = 0.06 +/-
0.03 in [4] and D; = (1.2 4+/- 0.4) x 10 mm?/s and f, = 0.10 +/- 0.05 in [5].
It should be noted that Bokacheva et al. excluded tumor edges, which tend to
be more vascular, from their analysis, which may account for their slightly lower
average. The parameter maps (Figure 4) demonstrated some heterogeneity of
the parameters within the tumor. In addition, there may be differences in the
patient populations.

In the stroma, D; was near that for free water and demonstrated an increas-
ing trend further from the tumor, which could be due to less dense extracellular
matrix or less cross-linking in this region. The monoexponential ADC showed
little variation with distance from the tumor, in agreement with [6]. The pseu-
dodiffusion fraction, f,, decreased with distance from the tumor (Figure 3b),
consistent with lower microvessel density [3] and previous DCE data [2]. These
IVIM parameters suggest that the smaller contribution of vascular perfusion to
the signal further from the tumor is compensated for by freer diffusion in the
extravascular space, resulting in a similar calculated ADC value throughout the
stroma when a two-point ADC method is used. Future work will attempt to
validate the IVIM findings using histological measures of microvessel density.

The IVIM model assumes that the extravascular tissue can be represented by
a single diffusion decay contribution. In the peri-tumoral stroma, there are very
few cells relative to the tumor itself and low b-values are insensitive to cellular
restriction, so this assumption is reasonable in this region. However, more com-
plex models may be needed to describe the tumor, such as those incorporating
restricted and hindered water diffusion by cells [9]. IVIM also assumes that wa-
ter does not move between the vasculature and the tissue during measurement,
which may affect parameter accuracy for leaky tumor vasculature.

This is the first study examining the diffusion signal in peri-tumoral stroma
for non-monoexponential behavior. Although this preliminary work examined
only a small number of patients, the results showed that a significant vascular
contribution to the signal exists in the stroma close to the tumor. These dif-
ferences could not be detected by a conventional monoexponential ADC model.
In light of the correlations observed previously between DCE-MRI stromal en-
hancement and tumor recurrence, models of MR diffusion signal that account
for vascular contributions deserve further study.
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