
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Approximability of Latin Square Completion-Type
Puzzles

Haraguchi, Kazuya
Faculty of Commerce, Otaru University of Commerce : Associate Professor

Ono, Hirotaka
Faculty of Economics, Kyushu University : Associate Professor

https://hdl.handle.net/2324/1456039

出版情報：Lecture Notes in Computer Science. 8496, pp.218-229, 2014-07-01. Springer
バージョン：
権利関係：

Approximability of Latin Square

Completion-Type Puzzles⋆

Kazuya Haraguchi1 and Hirotaka Ono2

1 Faculty of Commerce, Otaru University of Commerce, Japan.
haraguchi@res.otaru-uc.ac.jp

2 Faculty of Economics, Kyushu University, Japan.
hirotaka@econ.kyushu-u.ac.jp

Abstract. Among many variations of pencil puzzles, Latin square
Completion-Type puzzles (LSCP), such as Sudoku, Futoshiki and Block-

Sum, are quite popular for puzzle fans. Concerning these puzzles, the
solvability has been investigated from the viewpoint of time complexity
in the last decade; it has been shown that, in most of these puzzles, it is
NP-complete to determine whether a given puzzle instance has a proper
solution. In this paper, we investigate the approximability of LSCP. We
formulate LSCP as the maximization problem that asks to fill as many
cells as possible, under the Latin square condition and the inherent con-
dition. We then propose simple generic approximation algorithms for
LSCP and analyze their approximation ratios.

Keywords: Latin square Completion-Type puzzles, approximation al-
gorithms, Sudoku, Futoshiki, BlockSum

1 Introduction

Pencil puzzles are now very popular all over the world, and even specialized
magazines are published.3 Among many variations of pencil puzzles, Latin square

Completion-Type puzzle (LSCP), such as Sudoku, is quite popular for puzzle
fans. In a typical LSCP, we are given an n × n partial Latin square. An n × n
partial Latin square is an assignment of n integers (i.e., 1, 2, . . . , n) to n2 cells
on the n × n grid such that the Latin square condition is satisfied. The Latin
square condition requires that, in each row and in each column, every integer in
{1, 2, . . . , n} should appear at most once. Then we are asked to fill all the empty
cells with n integers so that the Latin square condition and the constraints
peculiar to the puzzle are satisfied.

In this paper, we investigate the approximability of LSCP. We formulate
LSCP as the maximization problem that asks to fill as many empty cells as
possible, under the Latin square condition and the inherent condition. Picking

⋆ This work is partially supported by JSPS KAKENHI Grant Number 24106004,
25104521 and 25870661.

3 http://www.nikoli.co.jp/en/

up Sudoku, Futoshiki and BlockSum, we present three generic algorithms for
approximately solving these puzzles. The generic approximation algorithms are
standard ones: a greedy approach, a matching-based approach and a local search
approach. We then analyze their approximation ratios.

Let us describe the background of the research. Concerning the pencil puz-
zles, the main attention in the last decade is solvability from the viewpoint of
time complexity. It has been shown that, in most of the pencil puzzles, it is NP-
complete to determine whether a given puzzle instance has a proper solution;
e.g., Hashiwokakero [1], Kurodoko [13], Shakashaka [5]. For LSCP, BlockSum [9]
and Sudoku [19] are NP-complete. Hearn and Demaine [10] investigated compu-
tational complexity of not only pencil puzzles but also other types of puzzles.

Unlike these previous studies, we are interested in the approximability of
LSCP rather than solvability because it might be more useful information for
puzzle solvers . From the viewpoint of puzzle solvers, the NP-completeness of
solvability is not necessarily useful information because the puzzle solvers are
usually given solvable puzzle instances. Alternatively, a useful theoretical result
for puzzle solvers could be approximability. It might be more fun to know that
a certain strategy (or algorithm) always fills 50% of the empty cells, or that it
is NP-hard to fill 99% of the empty cells. The complexity of solvability could
be meaningful rather for puzzle creators . They should create solvable puzzle
instances, often those having unique solutions. The intractability might imply
that the task is difficult even if they can use computers.

The paper is organized as follows. We prepare terminologies and formulate
the three LSCP as maximization problems in Sect. 2. In Sect. 3, we review the
previous results on computational hardness of the LSCP and present our new
results on Futoshiki. Then in Sect. 4, we present generic approximation algorithms
for the LSCP, along with their approximation ratios for the respective puzzles.
Finally we give concluding remarks in Sect. 5.

2 Preliminaries

2.1 Latin Square

Let n ≥ 2 be a natural number. First we introduce notations on the n× n grid
of cells. Let us denote [n] = {1, 2, . . . , n}. For any i, j ∈ [n], we denote the cell
in the row i and in the column j by (i, j). We say that two cells (i, j) and (i′, j′)
are adjacent if |i − i′| + |j − j′| = 1. The adjacency defines the connectivity of
cells. A block is a set of connected cells. We denote a block by B ⊆ [n]2. We call
B a τ-block if it consists of τ cells. In particular, we call 1-block a unit block .
When the cells in the block form a p× q rectangle, we call it a (p× q)-block .

Next we introduce notations on assignment of values to the grid. The values
to be assigned are the n integers 1, 2, . . . , n. We represent a partial assignment of
values by an n×n array, say A. For each cell (i, j), we denote the assigned value
by Aij ∈ [n]∪{0}, where Aij = 0 indicates that (i, j) is empty. When all the cells
are empty, we call A empty. We define the size of A as the number of non-empty

cells of A. We denote the size of A by |A|, that is, |A| = |{(i, j) ∈ [n]2 | Aij 6= 0}|.
We call A a partial Latin square (PLS) if it satisfies the Latin square condition
that we introduced in Sect. 1. In particular, if all the cells are assigned values,
then we simply call A a Latin square (LS). Two PLSs A and L are compatible

if the following two conditions hold:

(i) For every cell (i, j) ∈ [n]2, at least one of Aij = 0 and Lij = 0 holds.
(ii) The assignment A⊕ L defined as follows is a PLS:

(A⊕ L)ij =







Aij if Aij 6= 0 and Lij = 0,
Lij if Aij = 0 and Lij 6= 0,
0 otherwise.

A PLS L′ is an extension of a PLS L (or equivalently, L is a restriction of L′)
if L′

ij = Lij whenever Lij 6= 0. When L′ is an extension of L, we write L′ > L.
One readily sees that L′ > L holds iff there is a PLS A such that A and L are
compatible and L′ = A⊕ L. Given a PLS L, the partial Latin square extension

(PLSE) problem asks to construct a PLS A of the maximum size such that A
and L are compatible.

2.2 Sudoku, Futoshiki and BlockSum as Maximization Problems

We formulate the three puzzles as maximization problems. We illustrate in-
stances and solutions of these puzzles in Fig. 1. The rules of the respective
puzzles are described as follows: Sudoku asks to complete the Latin square so
that, in each block indicated by bold lines, every integer appears exactly once.
Futoshiki asks to complete the Latin square so that, when there is an inequality
sign between two adjacent cells, two integers assigned to them should satisfy the
inequality. BlockSum asks to complete the Latin square so that, in each block
indicated by bold lines, the sum of the assigned integers over the block should
be equal to the small value that is depicted in the block.

The puzzle maximization problems ask not to complete the Latin square but
to fill as many cells as possible. An optimal solution is not necessarily an LS,
whereas puzzle instances that are given to human solvers usually have unique LS
solutions. Each problem is a special type of the PLSE problem in the sense that,
given a PLS L and possibly additional parameters, we are asked to construct a
PLS A of the maximum size so that A and L are compatible, and at the same
time, A⊕L satisfies the condition C peculiar to the puzzle. The extra condition
C is peculiar to each puzzle, coming from the rule of the puzzle.

To deal with the ordinary PLSE and the three maximization problems in a
unified way, we denote the PLSE with extra condition C by C-PLSE . When we
write C-PLSE, C can be any of CSUD, CFUT, CBS and CNULL, where CSUD (resp.,
CFUT and CBS) denotes the constraint peculiar to Sudoku (resp., Futoshiki and
BlockSum) and CNULL denotes the null condition; CNULL-PLSE represents the
ordinary PLSE problem. For a C-PLSE instance, we call a PLS A a C-solution if
A and L are compatible and A⊕L satisfies C with respect to the given instance.
We may abbreviate it into simply a solution when C is clear from the context.

(Sudoku) (Futoshiki) (BlockSum)

1

2

3

4
<

>

>

<

<

1

24
2

7

7 7

8

9
2

1

1

1

2

2

2

3

3

3

4

4

4

1

2

3

4
<

>

>

<

<

1

1

1

2

2

2

3

3

3

3 4

4

4

1

24

1

1

1

1

2

2

2

3

3

3

3

4

4

4

4
2

7

7 7

8

9
2

Fig. 1. Instances (upper) and solutions (lower) of Sudoku, Futoshiki and BlockSum

(n = 4; n0 = n1 = 2 for Sudoku)

Below we explain the condition C and what is given as an instance besides a
PLS L in the respective puzzles.

In Sudoku, the grid length n is assumed to be a composite number. We are
given two positive integers n0 and n1 such that n = n0n1. Note that the n× n
grid is partitioned into n (n0 × n1)-blocks.

Condition CSUD: In every (n0 × n1)-block, each integer in [n] appears at most
once.

We call a PLS a Sudoku PLS if it satisfies CSUD. Given a Sudoku PLS L, the
CSUD-PLSE problem asks to construct a Sudoku PLS A of the maximum size
such that A and L are compatible, and that A⊕ L is a Sudoku PLS as well.

Problem CSUD-PLSE (Sudoku)
Input: Two positive integers n0 and n1 such that n = n0n1 and an n × n

Sudoku PLS L.
Output: An n× n Sudoku PLS A of the maximum size such that A and L

are compatible, and at the same time, A⊕ L is a Sudoku PLS.

In Futoshiki, we are given a set of inequality signs such that each inequality
sign is located between two adjacent cells. Let QL be the set of all the ordered
pairs of two adjacent cells such that at least one of them is empty in L, that is,

QL =
{

((i, j), (i′, j′)) ∈ [n]2 × [n]2 | (i, j) and (i′, j′) are adjacent, and

at least one of (i, j) and (i′, j′) is empty in L
}

.

We call a subset Q of QL a sign set (with respect to L) when ((i, j), (i′, j′)) ∈ Q
implies ((i′, j′), (i, j)) /∈ Q. Each ((i, j), (i′, j′)) ∈ Q represents a constraint such
that (i, j) should be assigned a smaller integer than (i′, j′). Note that Q contains
at most one inequality sign between any two adjacent cells, and in particular,
it contains no inequality sign between two adjacent cells such that both cells
are non-empty; such an inequality sign would be redundant in the puzzle. The
CFUT-PLSE problem asks to construct a PLS A of the maximum size such that
A and L are compatible and A⊕ L satisfies the following condition.

Condition CFUT: For every pair ((i, j), (i′, j′)) of adjacent cells in Q, either (i)
or (ii) holds: (i) (A⊕L)ij = 0 or (A⊕L)i′j′ = 0, or (ii) (A⊕L)ij < (A⊕L)i′j′ .

Problem CFUT-PLSE (Futoshiki)
Input: An n× n PLS L and a sign set Q ⊆ QL.
Output: An n × n PLS A of the maximum size such that A and L are

compatible, and at the same time, that A⊕ L satisfies CFUT.

In BlockSum, we are given a partition B of n2 cells into blocks, and a function
σ : B → [n2(n+1)/2]. The B is a partition such that every non-empty cell (i, j)
in L constitutes a unit block, i.e., {(i, j)} ∈ B, and that every empty cell is
contained in a non-unit block. The function σ is called a capacity function. The
integer σ(B) assigned to each block B ∈ B is the capacity of B. For any unit
block {(i, j)}, its capacity σ({i, j}) is set to Lij . Also σ satisfies

∑

B∈B
σ(B) =

n2(n + 1)/2, where the right hand side is the sum of n2 integers in any n × n
LS. The CBS-PLSE problem asks to construct an n× n PLS A of the maximum
size such that A and L are compatible and that and A⊕L satisfies the following
condition.

Condition CBS: For every block B in the partition B,

∑

(i,j)∈B

(A⊕ L)ij ≤ σ(B). (1)

In (1), we relax the condition of the orignal BlockSum by replacing the equality
with the inequality in order to treat the puzzle as the maximization problem.

Problem CBS-PLSE (BlockSum)

Input: An n×n PLS L, a partition B of n2 cells into blocks, and a capacity
function σ : B → [n2(n+ 1)/2].

Output: An n × n PLS A of the maximum size such that A and L are
compatible, and at the same time, that A⊕ L satisfies CBS.

Note that we have only to consider how we assign integers to the empty cells,
all of which are contained in non-unit blocks; in any unit block {(i, j)} ∈ B, the
cell is already assigned the integer Lij . Since it is equal to the capacity σ({i, j})
of the block, (1) is automatically satisfied.

We have finished explaining the three maximization problems. In each prob-
lem, one can easily confirm the solution monotonicity such that, when A is a
solution, any restriction A′ 6 A is a solution as well. A solution A is blocked if
any extension A′ of A (A′ 6= A) is not a solution.

Let us denote a maximization problem instance by I and its global optimal
solution by A∗(I). For a real number ρ ∈ [0, 1], a solution A to the instance I is
a ρ-approximate solution if |A|/|A∗(I)| ≥ ρ holds. A polynomial time algorithm
is called a ρ-approximation algorithm if it delivers a ρ-approximate solution for
any instance. The bound ρ is called the approximation ratio of the algorithm.

3 Hardness

We review previous studies on computational complexity of C-PLSE and present
our new results on CFUT-PLSE. First we mention that CNULL-PLSE (i.e., the
ordinary PLSE) is computationally expensive.

Theorem 1 (Colbourn [3]). CNULL-PLSE is NP-hard.

Theorem 2 (Easton and Parker [6]). CNULL-PLSE is NP-hard even if at

most three empty cells exist in any row or in any column, and only three values

are available.

Theorem 3 (Hajirasouliha et al. [7]). CNULL-PLSE is APX-hard.

CSUD-PLSE is NP-hard in general [19]. Interestingly, it is still NP-hard even
if each row (or column) is either empty or full, whereas CNULL-PLSE in this case
can be solved in polynomial time [2]. CBS-PLSE is NP-hard even if every block
consists of at most two cells [9].

CFUT-PLSE has been hardly studied in the literature except [8], which dis-
cusses how many inequality signs should be given in automatic instance gen-
eration. We summarize the computational hardness of CFUT-PLSE in Table 1.
A CFUT-PLSE instance is given in terms of (L,Q) such that L is a PLS and
Q ⊆ QL is a sign set. When L is empty, we know nothing about the hardness
except the trivial case of Q = ∅, where any LS is as an optimal solution. We leave
the case of empty L open. Let us turn our attention to the case of non-empty L.
When Q = ∅, the problem is equivalent to CNULL-PLSE, and thus is NP-hard by
Theorem 1. When Q is a non-empty subset of QL, it is NP-hard by the following
Theorem 4.

Theorem 4. CFUT-PLSE is NP-hard if L is a non-empty PLS and Q is a non-

empty subset of QL.

Proof. We prove the theorem by reduction from the special case of CNULL-PLSE
in Theorem 2; at most three cells are empty in each row and in each column,
and only three values are available. Permuting the n values appropriately, we
can set the three available values to 1, 2 and 3. Let L be the PLS that is given
in this way. We transform L into a CFUT-PLSE instance on the 2n × 2n grid.

Table 1. Computational hardness of CFUT-PLSE

Sign set Q ⊆ QL

empty non-empty

(Q is any subset of QL) (Q = QL)

PLS L empty trivial ? ?
non-empty NP-hard NP-hard NP-hard

(Theorem 1) (Theorem 4) (Corollary 1)

Let L′ be an arbitrary n × n LS. We define a 2n × 2n PLS L′′ as follows; for
k, ℓ = 1, 2, . . . , n,

L′′
(2k−1)(2ℓ−1) = Lkℓ, L′′

(2k−1)(2ℓ) = L′′
(2k)(2ℓ−1) = L′

kℓ + n, L′′
(2k)(2ℓ) = L′

kℓ.

Let us emphasize that the PLS L should be copied to the n2 (2k−1, 2ℓ−1)’-s, i.e.,
the cells such that both row order and column order are odd. All the remaining
cells are assigned values in [2n] so that, in each row and column, any value in
[2n] appears at most once; they play the role of garbage collection. The empty
cells appear in only (2k − 1, 2ℓ − 1)’-s and any two of them are not adjacent.
Then for any empty cell (2k − 1, 2ℓ− 1) and any non-empty cell (i, j) adjacent
to it, we let ((2k− 1, 2ℓ− 1), (i, j)) ∈ Q, i.e., (2k− 1, 2ℓ− 1) should be assigned a
smaller value than (i, j), where (i, j) is already assigned an integer larger than n
in L′′. We have finished constructing the CFUT-PLSE instance. The construction
time is obviously polynomial. In the decision problem versions, the answers to
CNULL-PLSE instance and the constructed CFUT-PLSE instance agree. �

In the above proof, the sign set Q is set to the full sign set QL′′ .

Corollary 1 When L is non-empty, CFUT-PLSE is still NP-hard even if Q is

restricted to Q = QL.

4 Approximation Algorithms

In this section, we present approximation algorithms for C-PLSE. The algorithms
generalize existing ones for CNULL-PLSE. We borrow three types of algorithms
from the literature: greedy algorithm, matching based approach, and local search.
All the algorithms introduced below run in polynomial time. See the referred
papers for time complexity analysis.

4.1 Greedy Algorithm

The greedy algorithm in this case refers to an algorithm as follows; starting from
an empty solution, we repeat choosing an arbitrary empty cell and assigning a
value in [n] to the cell so that the resulting assignment remains a solution. This
is repeated until the solution is blocked. For CNULL-PLSE, Kumar et al. [14]
showed that it is a 1/3-approximation algorithm.

Theorem 5 (Kumar et al. [14]). For any instance of CNULL-PLSE, a blocked

solution is a 1/3-approximate solution.

To extend this theorem, we give the detailed proof of the theorem.

Proof. Let A be a blocked solution and A∗ be an optimal solution. We cannot
assign the value A∗

pq to any cell (p, q) in A since at least one element in A
“blocks” (p, q) from taking A∗

pq. We claim that each element Aij in A should

block at most three cells (p, q)’-s from taking A∗
pq ; denoted by SNULL

ij (A,A∗),
the set of such blocked cells is defined as follows:

SNULL
ij (A,A∗) ={(i, j)} ∪ {(i′, j) | Ai′j = 0 and A∗

i′j = Aij}

∪ {(i, j′) | Aij′ = 0 and A∗
ij′ = Aij}, (2)

that is, (i, j) itself, the cell (i′, j) in the same column with A∗
i′j = Aij , and the

cell (i, j′) in the same row with A∗
ij′ = Aij . Clearly |SNULL

ij (A,A∗)| ≤ 3 holds
for any (i, j).

We see that |A∗| ≤
∑

ij |S
NULL
ij (A,A∗)| holds; if not so, there exists (p, q) /∈

⋃

ij S
NULL
ij (A,A∗) such that (p, q) is non-empty in A∗. Then in A, (p, q) is empty

and is not blocked by any Aij from taking A∗
pq. This means that we can extend

A by assigning the value A∗
pq to (p, q), contradicting that A is blocked.

Finally we have the inequalities |A∗| ≤
∑

ij |S
NULL
ij (A,A∗)| ≤ 3|A|, which

proves that A is a 1/3-approximate solution. �

The point is the size of SNULL
ij (A,A∗) in (2). Since it is at most three, any

blocked solution is a 1/3-approximate solution. Then for C-PLSE, designing the
similar set SC

ij(A,A
∗) appropriately, we can prove any blocked solution to be

a 1/βC-approximate solution in the analogous way, where βC denotes an upper
bound on the size of SC

ij(A,A
∗). For CSUD-PLSE, we can set the upper bound

to βSUD = 4 by taking the set SSUD
ij (A,A∗) as follows:

SSUD
ij (A,A∗) =SNULL

ij (A,A∗) ∪ {(p, q) | Apq = 0, A∗
pq = Aij and

(i, j) and(p, q) belong to the same (n0 × n1)-block}.

Theorem 6. For any CSUD-PLSE instance, a blocked solution is a 1/4-
approximate solution.

For CFUT-PLSE, the approximation ratio depends on how many inequal-
ity signs are around a cell. Let δ denote the maximum number of inequality
signs that surround an empty cell over the given instance. Clearly we have
δ ∈ {0, 1, . . . , 4}. Then we can set the bound to βFUT = 3 + δ by taking the
set SFUT

ij (A,A∗) as follows since, in the right hand, the size of the second set is
at most δ.

SFUT
ij (A,A∗) =SNULL

ij (A,A∗) ∪ {(p, q) | Apq = 0, and either

(A∗
pq > Aij and ((p, q), (i, j)) ∈ Q) or

(A∗
pq < Aij and ((i, j), (p, q)) ∈ Q)}.

Theorem 7. Suppose that we are given a CFUT-PLSE instance such that the

number of inequality signs surrounding a cell is at most δ. Then any blocked

solution is a 1/(3 + δ)-approximate solution.

For CBS-PLSE, the approximation ratio depends on the maximum size of the
block over the instance, which we denote by ∆. We set the bound to βBS = 2+∆,
taking the set SBS

ij (A,A∗) as follows since, in the right hand, the size of the second
set is at most ∆− 1.

SBS
ij (A,A∗) =SNULL

ij (A,A∗) ∪ {(p, q) | Apq = 0, (i, j) and (p, q) belong

to the same block B ∈ B, and A∗
pq +

∑

(i′,j′)∈B

Ai′j′ > σ(B)}.

Theorem 8. Suppose that we are given a CBS-PLSE instance such that the block

size is at most ∆. Then any blocked solution is a 1/(2+∆)-approximate solution.

We observe that these approximation ratios are tight, but we omit the tight
examples due to space limitation.

4.2 Matching Based Approach

Another approximation algorithm for CNULL-PLSE is based on matching. We
call this algorithm Matching. The algorithm behaves as follows. Let Iijk be
a PLS such that Iijkpq = k if (p, q) = (i, j) and Iijkpq = 0 otherwise. For a given
instance, it assigns the value k to empty cells in the order k = 1, 2, . . . , n. Let
Ak−1 be the solution that has been constructed so far such that the values from
1 to k − 1 are already assigned. Initially, A0 is set to an empty solution. Which
empty cells are assigned k is determined by a maximum matching in the graph
Gk = (R ∪ C,Ek) such that R = {r1, r2, . . . , rn} and C = {c1, c2, . . . , cn} are
the node sets that represent rows and columns of the grid respectively, and

Ek = {(ri, cj) ∈ R × C | Ak−1
ij = 0 and Ak−1 ⊕ Iijk is a solution}

is the edge set. Computing a maximummatchingM ⊆ Ek, the algorithm extends
Ak−1 by assigning k to (i, j) for each edge (ri, cj) ∈ M , which is used as the next
solution Ak. The algorithm repeats this process from k = 1 to n and outputs
An.

Theorem 9 (Kumar et al. [14]). The algorithm Matching is a 1/2-
approximation algorithm for CNULL-PLSE.

See the proof for [14]. The point is that any matching in Gk provides a set
of cells to which k can be assigned simultaneously. This property holds because,
in CNULL-PLSE, Aij = k never blocks any other cells out of row i and column j
from taking k, i.e., the set SNULL

ij (A,A∗) in (2) contains no (p, q) ∈ [n]2 such that
p 6= i and q 6= j. To C-PLSE that has the property, we can apply the algorithm
Matching directly so that the approximation ratio remains 1/2. Then it is
applicable to CFUT-PLSE in general.

Theorem 10. The algorithm Matching is a 1/2-approximation algorithm for

CFUT-PLSE.

On the other hand, the algorithm is not applicable to CSUD-PLSE directly
since the problem does not have the above property; once value k is assigned
to (i, j), we cannot assign k to any other cell (p, q) in the same (n0 × n1)-block
even though (i, j) and (p, q) belong to different rows and columns, i.e., i 6= p and
j 6= q. In this case, a matching in Gk does not necessarily provide a set of empty
cells that can be assigned k simultaneously. The algorithm is not applicable to
CBS-PLSE either, except the special case in the following theorem. The point is
that each block is closed in one row or in one column.

Theorem 11. Suppose that we are given a CBS-PLSE instance such that each

block is either a (1 × ℓ)-block or an (ℓ × 1)-block. To such an instance, the

algorithm Matching delivers a 1/2-approximate solution.

4.3 Local Search

Let t denote a positive integer. We introduce the t-set packing problem; Let S be
a finite set of elements and suppose that we are given a family F = {F1, . . . , Fq}
of q subsets of S such that each Fi ∈ F contains at most t elements. A collection
F ′ ⊆ F is called a packing if any two subsets in F ′ are disjoint. The problem
asks to find a largest packing in F , belonging to Karp’s list of 21 NP-hard
problems [12].

For this problem, we consider a local search algorithm that behaves as follows;
given a positive integer r as a parameter, let F ′ ⊆ F be an arbitrary packing.
Then repeat replacing r′ ≤ r sets in F ′ with r′ + 1 sets in F such that F ′

continues to be a packing, as long as the replacement is possible. The following
result is well-known.

Theorem 12 (Hurkens and Schrijver [11]). Suppose that an instance of the

t-set packing problem is given in terms of a family F of subsets of an element

set S. For any parameter r ≥ 1, there exists a constant ε > 0 such that the local

search algorithm delivers a (2/t− ε)-approximate solution.

Hajirasouliha et al. [7] applies the local search to CNULL-PLSE by reducing it
to the 3-set packing problem. Given a CNULL-PLSE instance in terms of a PLS
L, the packing problem instance F is constructed as follows. Let the element
set be SNULL = (R × C) ∪ (R × [n]) ∪ (C × [n]). Then let F contain a subset
{(ri, cj), (ri, k), (cj , k)} ⊆ SNULL iff the value k can be assigned to (i, j), i.e., L
does not assign k to any cell in row i or column j. Obviously there is one-to-
one, size-preserving correspondence between the solution sets of the two problem
instances.

Theorem 13 (Hajirasouliha et al. [7]). For any parameter r ≥ 1, there

exists a constant ε > 0 such that the local search is a (2/3 − ε)-approximation

algorithm for CNULL-PLSE.

We can apply the local search to CSUD-PLSE, regarding it as the 4-set packing
problem. Suppose that a CSUD-PLSE instance is given. Let B = {B1, . . . , Bn}
denote the set of (n0 × n1)-blocks in the grid, and the element set be SSUD =
SNULL ∪ (B × [n]). We then construct the family F so that it contains a subset
{(ri, cj), (ri, k), (cj , k), (Bp, k)} ⊆ SSUD iff k can be assigned to an empty cell
(i, j) that belongs to the block Bp. The solution correspondence is immediate.

Theorem 14. For any ε > 0, there exists a (1/2− ε)-approximation algorithm

for CSUD-PLSE.

Recently, Cygan [4] improved the approximation ratio for the t-set packing prob-
lem from 2/t − ε to 3/(t + 1) − ε by means of bounded pathwidth local search.
This improves the approximation ratios for CNULL-PLSE and CSUD-PLSE.

Theorem 15. For any ε > 0, there exists a (3/4− ε)-approximation algorithm

for CNULL-PLSE.

Theorem 16. For any ε > 0, there exists a (3/5− ε)-approximation algorithm

for CSUD-PLSE.

5 Concluding Remarks

In summary, the current best approximation ratios for C-PLSEs are as follows:

– CNULL-PLSE: 3/4− ε (Theorem 15).
– CSUD-PLSE (Sudoku): 3/5− ε (Theorem 16).
– CFUT-PLSE (Futoshiki): 1/2 (Theorem 10).
– CBS-PLSE (BlockSum): 1/(2 + ∆) (Theorem 8); when each block is closed

in one row or in one column, there is a 1/2-approximation algorithm (The-
orem 11).

It is interesting future work to pursuit the limit by improving these ratios. For
CNULL-PLSE, since it is APX-hard (Theorem 3), there exists a constant ρ∗ ∈
(0, 1) such that no ρ∗-approximation algorithm exists unless P=NP. The above
result indicates ρ∗ ≥ 3/4. For the other C-PLSEs, whether they are APX-hard
or not is open.

We described previous results on NP-hardness of PLSE, Sudoku and Block-

Sum and presented our results on Futoshiki in Sect. 3. Still, it is open whether
the spacial case of Futoshiki such that an empty PLS is given is NP-hard (see
Table 1).

An LSCP called KenKen [15–18] is a generalization of BlockSum. BlockSum
deals with the summation of the assigned integers in its inherent condition CBS,
while subtraction, multiplication and division are also treated in KenKen. Since
its special case is NP-hard, KenKen is also NP-hard. Furthermore, we can apply
the greedy algorithm and the matching based algorithm to KenKen similarly to
BlockSum, which achieves the same approximation ratios. We omit the details
due to space limitation.

We have studied approximability and inapproximability of LSCP in general
settings in the sense that we do not make any assumption on whether a puzzle
instance has an LS solution or not. As pointed out in the introductory section,
however, a puzzle instance given to a human solver usually has a unique solu-
tion. Hence it may be more meaningful to restrict our attention to such puzzle
instances. This suggests an interesting direction of our future research.

References

1. Andersson, D.: Hashiwokakero is NP-complete. Information Processing Letters
109(19), 1145–1146 (2009)

2. Béjar, R., Fernández, C., Mateu, C., Valls, M.: The Sudoku completion prob-
lem with rectangular hole pattern is NP-complete. Discrete Mathematics 312(22),
3306–3315 (2012)

3. Colbourn, C.J.: The complexity of completing partial latin squares. Discrete Ap-
plied Mathematics 8(1), 25–30 (1984)

4. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. arXiv preprint arXiv:1304.1424 (2013)

5. Demaine, E.D., Okamoto, Y., Uehara, R., Uno, Y.: Computational complexity and
an integer programming model of Shakashaka. In: CCCG. pp. 31–36 (2013)

6. Easton, T., Gary Parker, R.: On completing latin squares. Discrete Applied Math-
ematics 113(2), 167–181 (2001)

7. Hajirasouliha, I., Jowhari, H., Kumar, R., Sundaram, R.: On completing latin
squares. In: STACS 2007, pp. 524–535. Springer (2007)

8. Haraguchi, K.: The number of inequality signs in the design of Futoshiki puzzle.
Journal of Information Processing 21(1), 26–32 (2013)

9. Haraguchi, K., Ono, H.: Blocksum is NP-complete. IEICE Transactions on Infor-
mation and Systems 96(3), 481–488 (2013)

10. Hearn, R.A., Demaine, E.D.: Games, puzzles, and computation. AK Peters, Lim-
ited (2009)

11. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics 2(1), 68–72 (1989)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

13. Kölker, J.: Kurodoko is NP-complete. Journal of Information Processing 20(3),
694–706 (2012)

14. Kumar, S.R., Russell, A., Sundaram, R.: Approximating latin square extensions.
Algorithmica 24(2), 128–138 (1999)

15. Miyamoto, T.: Black Belt KenKen: 300 Puzzles. Puzzlewright (2013)
16. Miyamoto, T.: Brown Belt KenKen: 300 Puzzles. Puzzlewright (2013)
17. Miyamoto, T.: Green Belt KenKen: 300 Puzzles. Puzzlewright (2013)
18. Miyamoto, T.: White Belt KenKen: 300 Puzzles. Puzzlewright (2013)
19. Yato, T., Seta, T.: Complexity and completeness of finding another solution and

its application to puzzles. IEICE transactions on fundamentals of electronics, com-
munications and computer sciences 86(5), 1052–1060 (2003)

