Skip to main content

Modeling Packet Traffic with the Use of Superpositions of Two-State MMPPs

  • Conference paper
Book cover Computer Networks (CN 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 431))

Included in the following conference series:

Abstract

The aim of this paper is to use the superposition of two-state Markov Modulated Poisson Processes to replicate the statistical nature of internet traffic over several time scales. This paper characterizes of network traffic using Bellcore data and LAN traces collected in IITiS PAN. The fitting procedure for matching second-order self-similar properties of real data traces to that of two-state MMPP’s has also been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleinrock, L.: Queueing Systems, vol. II. Wiley, New York (1976)

    MATH  Google Scholar 

  2. Becchi, M.: From Poisson Processes to Self-Similarity: a Survey of Network Traffic Models. Technical report, Citeseer (2008)

    Google Scholar 

  3. Crovella, M., Bestavros, A.: Self-similarity in World Wide Web Traffic: Evidence and Possible Causes. IEEE/ACM Transactions on Networking 5, 835–846 (1997)

    Article  Google Scholar 

  4. Domański, A., Domańska, J., Czachórski, T.: The impact of self-similarity on traffic shaping in wireless LAN. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) NEW2AN 2008. LNCS, vol. 5174, pp. 156–168. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Paxson, V., Floyd, S.: Wide area traffic: the failure of poisson modeling. IEEE/ACM Transactions on Networking 3, 226–244 (1995)

    Article  Google Scholar 

  6. Willinger, W., Leland, W.E., Taqqu, M.S.: On the self-similar nature of ethernet traffic. IEEE/ACM Transactions on Networking 2, 1–15 (1994)

    Article  Google Scholar 

  7. Garret, M., Willinger, W.: Analysis, modeling and generation of self-similar VBR video traffic. In: ACM SIGCOMM, London, pp. 269–280 (1994)

    Google Scholar 

  8. Norros, I.: On the use of fractional Brownian motion in the theory of connectionless networks. IEEE Journal on Selected Areas in Communication 13(6), 953–962 (1995)

    Article  Google Scholar 

  9. Taqqu, M.S., Willinger, W., Sherman, R.: Proof of a fundamental result in self-similar traffic modeling. Computer Communication Review 27(2), 5–23 (1997)

    Article  Google Scholar 

  10. Mikosch, T., Resnick, S., Rootzen, H., Stegeman, A.: Is Network Traffic approximated by Stable Levy Motion or Fractional Brownian Motion? The Analysis of Applied Probability 12(1), 23–68 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erramilli, A., Singh, R.P., Pruthi, P.: An Application of Determinic Chaotic Maps to Model Packet Traffic. Queueing Systems 20(1-2), 171–206 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallardo, J.R., Makrakis, D., Orozco-Barbosa, L.: Use a α-stable self-similar stochastic processes for modeling traffic in broadband networks. Performance Evaluation 40(1-3), 71–98 (2000)

    Article  MATH  Google Scholar 

  13. Harmantzis, F., Hatzinakos, D.: Heavy network traffic modeling and simulation using stable FARIMA processes. In: 19th International Teletraffic Congress, Beijing, China (2005)

    Google Scholar 

  14. Laskin, N., Lambadatis, I., Harmantzis, F.C., Devetsikiotis, M.: Fractional Levy Motion and its Application to network traffic modeling. Computer Networks 40(3), 363–375 (2002)

    Article  Google Scholar 

  15. Robert, S., Boudec, J.Y.L.: New models for pseudo self-similar traffic. Performance Evaluation 30(1-2), 57–68 (1997)

    Article  Google Scholar 

  16. Muscariello, L., Mellia, M., Meo, M., Ajmone Marsan, M., Lo Cigni, R.: Markov models of internet traffic and a new hierarchical MMPP model. Computer Communications 28, 1835–1851 (2005)

    Article  Google Scholar 

  17. Clegg, R.G.: Markov-modulated on/off processes for long-range dependent internet traffic. Computing Research Repository, CoRR, arXiv:cs/0610135 (2006)

    Google Scholar 

  18. Domańska, J., Domański, A., Czachórski, T.: The Drop-From-Front Strategy in AQM. In: Koucheryavy, Y., Harju, J., Sayenko, A. (eds.) NEW2AN 2007. LNCS, vol. 4712, pp. 61–72. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Domańska, J., Domański, A., Czachórski, T.: Internet traffic source based on Hidden Markov Model. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN/ruSMART 2011. LNCS, vol. 6869, pp. 395–404. Springer, Heidelberg (2011)

    Google Scholar 

  20. Domańska, J., Augustyn, D.R., Domański, A.: The choice of optimal 3-rd order polynomial packet dropping function for NLRED in the presence of self-similar traffic. Bulletin of the Polish Academy of Sciences, Technical Sciences 60(4) (2012)

    Google Scholar 

  21. Andersen, A.T., Nielsen, B.F.: A Markovian Approach for Modeling Packet Traffic with Long-Range Dependence. IEEE Journal on Selected Areas in Communications 16(5) (1998)

    Google Scholar 

  22. Bellcore Morristown Research and Engineering facility traffic traces, http://ita.ee.lbl.gov/html/contrib/BC.html

  23. Foremski, P., Callegari, C., Pagano, M.: Waterfall: Rapid identification of IP flows using cascade classification. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) 21th Conference on Computer Networks, CN 2014. CCIS, vol. 431, pp. 14–23. Springer, Heidelberg (2014)

    Google Scholar 

  24. Mandelbrot, B., Ness, J.V.: Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review 10 (October 1968)

    Google Scholar 

  25. Bhattacharjee, A., Nandi, S.: Statistical analysis of network traffic inter-arrival. In: 12th International Conference on Advanced Communication Technology, USA, pp. 1052–1057 (2010)

    Google Scholar 

  26. Cox, D.R.: Long-range dependance: A review. In: Statistics: An Appraisal, pp. 55–74 (1984)

    Google Scholar 

  27. Beran, J.: Statistics for Long-Memory Processes. Chapman and Hall (1994)

    Google Scholar 

  28. Stallings, W.: High-Speed Networks: TCP/IP and ATM Design Principles. Prentice-Hall (1998)

    Google Scholar 

  29. Casale, G.: Building accurate workload models using Markovian Arrival Processes. In: SIGMETRICS 2011, San Jose, USA (June 2011)

    Google Scholar 

  30. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Performance Evaluation 18(2), 149–171 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Okamura, H., Kamahara, Y., Dohi, T.: Estimating Markov-modulated compound poisson processes. In: Valuetools 2007, Nantes, France (October 2007)

    Google Scholar 

  32. Domańska, J., Domański, A.: The influence of traffic self-similarity on QoS mechanism. In: International Symposium on Applications and the Internet, SAINT, Trento, Italy (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Domańska, J., Domański, A., Czachórski, T. (2014). Modeling Packet Traffic with the Use of Superpositions of Two-State MMPPs. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2014. Communications in Computer and Information Science, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-07941-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07941-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07940-0

  • Online ISBN: 978-3-319-07941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics