Skip to main content

RRCA: Ultra-Fast Multiple In-species Genome Alignments

  • Conference paper
Book cover Algorithms for Computational Biology (AlCoB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8542))

Included in the following conference series:

Abstract

Multiple sequence alignment is an important method in Bioinformatics, for instance, to reconstruct phylogenetic trees or for identifying functional domains within genes. Finding an optimal MSA is computationally intractable, and therefore many alignment heuristics were proposed. However, computing MSA for sequences at chromosome/genome scale in a reasonable time with good alignment results remains an open challenge.

In this paper we propose RRCA, a very fast method to compute high-quality in-species MSAs at genome scale. RRCA uses referential compression to efficiently find long common subsequences in to-be-aligned sequences. A colinear sub collection of these subsequences is used for an initial alignment and the not yet covered subsequences are aligned following the same approach recursively. Our evaluation shows that RRCA achieves MSAs at similar quality as current state-of-the-art methods, while often being orders of magnitude faster for all our datasets. For instance, RRCA aligns eight human Chromosome 22 (around 50 MB each) within one minute on a consumer computer; a task that takes hours to days with competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing 467(7319), 1061–1073 (October 2010), http://dx.doi.org/10.1038/nature09534

  2. Abouelhoda, M.I., Ohlebusch, E.: Multiple genome alignment: Chaining algorithms revisited. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 1–16. Springer, Heidelberg (2003), http://dx.doi.org/10.1007/3-540-44888-8_1

    Chapter  Google Scholar 

  3. Angiuoli, S.V., Salzberg, S.L.: Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27(3), 334–342 (2011)

    Article  Google Scholar 

  4. Brudno, M., Chapman, M., Göttgens, B., Batzoglou, S., Morgenstern, B.: Fast and sensitive multiple alignment of large genomic sequences. BMC Bioinformatics 4, 66 (2003)

    Article  Google Scholar 

  5. Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., Koenig, D., Lanz, C., Stegle, O., Lippert, C., Wang, X., Ott, F., Müller, J., Alonso-Blanco, C., Borgwardt, K., Schmid, K.J., Weigel, D.: Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics 43(10), 956–963 (2011), http://dx.doi.org/10.1038/ng.911

    Article  Google Scholar 

  6. Carillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM Journal of Applied Math 48, 1073–1082 (1988)

    Article  Google Scholar 

  7. Chen, X., Tompa, M.: Comparative assessment of methods for aligning multiple genome sequences. Nat. Biotech. 28(6), 567–572 (2010), http://dx.doi.org/10.1038/nbt.1637

    Article  Google Scholar 

  8. Cohn, M., Khazan, R.: Parsing with prefix and suffix dictionaries. In: Data Compression Conference, pp. 180–189 (1996)

    Google Scholar 

  9. Deorowicz, S., Danek, A., Grabowski, S.: Genome compression: a novel approach for large collections. Bioinformatics 29(20), 2572–2578 (2013)

    Article  Google Scholar 

  10. Deorowicz, S., Debudaj-Grabysz, A., Gudyś, A.: Kalign-LCS — A more accurate and faster variant of kalign2 algorithm for the multiple sequence alignment problem. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 499–506. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-02309-0_54

    Google Scholar 

  11. Deorowicz, S., Grabowski, S.: Robust Relative Compression of Genomes with Random Access. Bioinformatics, Oxford, England (September 2011), http://dx.doi.org/10.1093/bioinformatics/btr505

  12. Döring, A., Weese, D., Rausch, T., Reinert, K.: Seqan an efficient, generic C++ library for sequence analysis. BMC Bioinformatics 9 (2008)

    Google Scholar 

  13. Edgar, R.C.: Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5(1) (August 2004), http://dx.doi.org/10.1186/1471-2105-5-113

  14. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: AliBI: An Alignment-Based Index for Genomic Datasets. ArXiv e-prints (July 2013)

    Google Scholar 

  15. Gross, S.S., Brent, M.R.: Using multiple alignments to improve gene prediction. J. Comput. Biol., 379–393 (2005)

    Google Scholar 

  16. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  17. Huang, L., Popic, V., Batzoglou, S.: Short read alignment with populations of genomes. Bioinformatics 29(13), i361–i370 (2013), http://dx.doi.org/10.1093/bioinformatics/btt215

  18. Katoh, K., Standley, D.M.: MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30(4), 772–780 (2013), http://dx.doi.org/10.1093/molbev/mst010

    Article  Google Scholar 

  19. Kemena, C., Notredame, C.: Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics 25(19), 2455–2465 (2009)

    Article  Google Scholar 

  20. Kreft, S., Navarro, G.: Lz77-like compression with fast random access. In: Proceedings of the 2010 Data Compression Conference, pp. 239–248. IEEE Computer Society Press, Washington, DC (2010), http://dx.doi.org/10.1109/DCC.2010.29

    Chapter  Google Scholar 

  21. Kuruppu, S., Puglisi, S., Zobel, J.: Optimized relative lempel-ziv compression of genomes. In: Australasian Computer Science Conference (2011)

    Google Scholar 

  22. Larkin, M., Blackshields, G.: Brown: Clustal w and clustal x version 2.0. Bioinformatics 23(21), 2947–2948 (2007), http://dx.doi.org/10.1093/bioinformatics/btm404

    Article  Google Scholar 

  23. Larsson, J., Moffat, A.: Offline dictionary-based compression. In: Proceedings of the IEEE Data Compression Conference, pp. 296–305 (March 1999)

    Google Scholar 

  24. McCreight, E.: Efficient algorithms for enumerating intersection intervals and rectangles. Tech. rep., Xerox Paolo Alte Research Center (1980)

    Google Scholar 

  25. Mewes, H., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S., Pfeiffer, F., Zollner, A.: Overview of the yeast genome. Nature 387(6632 Suppl.), 7–65 (1997), http://www.nature.com/doifinder/10.1038/42755

    Google Scholar 

  26. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology 48(3), 443–453 (1970), http://view.ncbi.nlm.nih.gov/pubmed/5420325

    Article  Google Scholar 

  27. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment.. Journal of molecular biology 302(1), 205–217 (2000), http://dx.doi.org/10.1006/jmbi.2000.4042 , doi:10.1006/jmbi.2000.4042

    Article  Google Scholar 

  28. Notredame, C.: Recent Evolutions of Multiple Sequence Alignment Algorithms. PLoS Computational Biology 3(8), e123 (2007), http://dx.doi.org/10.1371/journal.pcbi.0030123

  29. Roytberg, M., Gambin, A., Noe, L., Lasota, S., Furletova, E., Szczurek, E., Kucherov, G.: On subset seeds for protein alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6(3), 483–494 (2009), http://dx.doi.org/10.1109/TCBB.2009.4

    Article  Google Scholar 

  30. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  31. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S., Kohlbacher, O., Weigel, D.: Simultaneous alignment of short reads against multiple genomes. Genome biology 10(9), R98+ (2009), http://dx.doi.org/10.1186/gb-2009-10-9-r98

  32. Wandelt, S., Leser, U.: FRESCO: Referential compression of highly-similar sequences. IEEE/ACM Transactions on Computational Biology and Bioinformatics 99(PrePrints), 1 (2013)

    Google Scholar 

  33. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1(4), 337–348 (1994), http://view.ncbi.nlm.nih.gov/pubmed/8790475

    Article  Google Scholar 

  34. Wong, K.M., Suchard, M.A., Huelsenbeck, J.P.: Alignment Uncertainty and Genomic Analysis. Science 319(5862), 473–476 (2008), http://dx.doi.org/10.1126/science.1151532

    Article  MATH  MathSciNet  Google Scholar 

  35. Yu, H.J., Huang, D.S.: Normalized feature vectors: A novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10(2), 457–467 (2013), http://dx.doi.org/10.1109/TCBB.2013.10

    Article  Google Scholar 

  36. Zhang, Z., Raghavachari, B., Hardison, R.C., Miller, W.: Chaining multiple-alignment blocks. Journal of Computational Biology 1(3), 217–226 (1994)

    Google Scholar 

  37. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wandelt, S., Leser, U. (2014). RRCA: Ultra-Fast Multiple In-species Genome Alignments. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Algorithms for Computational Biology. AlCoB 2014. Lecture Notes in Computer Science(), vol 8542. Springer, Cham. https://doi.org/10.1007/978-3-319-07953-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07953-0_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07952-3

  • Online ISBN: 978-3-319-07953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics