Skip to main content

Multiple Sink Location Problems in Dynamic Path Networks

  • Conference paper
Book cover Algorithmic Aspects in Information and Management (AAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8546))

Included in the following conference series:

Abstract

This paper considers the k-sink location problem in dynamic path networks. In our model, a dynamic path network consists of an undirected path with positive edge lengths, uniform edge capacity, and positive vertex supplies. Here, each vertex supply corresponds to a set of evacuees. Then, the problem requires to find the optimal location of k sinks in a given path so that each evacuee is sent to one of k sinks. Let x denote a k-sink location. Under the optimal evacuation for a given x, there exists a (k − 1)-dimensional vector d, called (k − 1)-divider, such that each component represents the boundary dividing all evacuees between adjacent two sinks into two groups, i.e., all supplies in one group evacuate to the left sink and all supplies in the other group evacuate to the right sink. Therefore, the goal is to find x and d which minimize the maximum cost or the total cost, which are denoted by the minimax problem and the minisum problem, respectively. We study the k-sink location problem in dynamic path networks with continuous model, and prove that the minimax problem can be solved in O(kn logn) time and the minisum problem can be solved in O(kn 2) time, where n is the number of vertices in the given network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, D., Chen, R.: A relaxation-based algorithm for solving the conditional p-center problem. Operations Research Letters 38(3), 215–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cheng, S.W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax Regret 1-Sink Location Problems in Dynamic Path Networks. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 121–132. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Ford Jr., L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  4. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax Regret Sink Location Problem in Dynamic Tree Networks with Uniform Capacity. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 125–137. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Higashikawa, Y., Augustine, J., Cheng, S.W., Golin, M.J., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax Regret 1-Sink Location Problem in Dynamic Path Networks. Theoretical Computer Science (2014), doi:10.1016/j.tcs.2014.02.010

    Google Scholar 

  6. Kamiyama, N., Katoh, N., Takizawa, A.: An efficient algorithm for evacuation problem in dynamic network flows with uniform arc capacity. IEICE Transactions 89-D(8), 2372–2379 (2006)

    Google Scholar 

  7. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An O(n log2 n) Algorithm for the Optimal Sink Location Problem in Dynamic Tree Networks. Discrete Applied Mathematics 154(16), 2387–2401 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Higashikawa, Y., Golin, M.J., Katoh, N. (2014). Multiple Sink Location Problems in Dynamic Path Networks. In: Gu, Q., Hell, P., Yang, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2014. Lecture Notes in Computer Science, vol 8546. Springer, Cham. https://doi.org/10.1007/978-3-319-07956-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07956-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07955-4

  • Online ISBN: 978-3-319-07956-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics