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Abstract. While several self-indexes for highly repetitive texts exist,
developing a practical self-index applicable to real world repetitive texts
remains a challenge. ESP-index is a grammar-based self-index on the no-
tion of edit-sensitive parsing (ESP), an efficient parsing algorithm that
guarantees upper bounds of parsing discrepancies between different ap-
pearances of the same subtexts in a text. Although ESP-index performs
efficient top-down searches of query texts, it has a serious issue on bi-
nary searches for finding appearances of variables for a query text, which
resulted in slowing down the query searches. We present an improved
ESP-index (ESP-index-I) by leveraging the idea behind succinct data
structures for large alphabets. While ESP-index-I keeps the same types
of efficiencies as ESP-index about the top-down searches, it avoid the bi-
nary searches using fast rank/select operations. We experimentally test
ESP-index-I on the ability to search query texts and extract subtexts
from real world repetitive texts on a large-scale, and we show that ESP-
index-I performs better that other possible approaches.

1 Introduction

Recently, highly repetitive text collections have become common. Examples are
human genomes, version controlled documents and source codes in repositories.
In particular, the current sequencing technology enables us to sequence individ-
ual genomes in a short time, resulting in generating a large amount of genomes,
perhaps millions of genomes in the near future. There is therefore a strong de-
mand for developing powerful methods to store and process such repetitive texts
on a large-scale.

Grammar compression is effective for compressing and processing repetitive
texts, and it builds a context free grammar (CFG) that generates a single text.
There are two types of problems: (i) building as small as possible of a CFG
generating an input text and (ii) representing the obtained CFG as compactly
as possible for various applications. Several methods have been presented for
type (i). Representative methods are RePair [12] and LCA [17]. Methods for
type (ii) have also been presented for processing repetitive texts, e.g., pattern
matching [18], pattern mining [9] and edit distance computation [10].
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PRESTO program.
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Table 1. Comparison with existing methods. Searching time and extraction
time is presented in big O notation that is omitted for space limitations. u is
text length, m is the length of a query text, n is the number of variables in a
grammar, σ is alphabet size, z is the number of pharases in LZ77, d is the length
of nesting in LZ77, occ is the number of occurrences of query text in a text, occc
is the number of candidate apperances of queries, lg∗ is the iterated logarithm
and ǫ is a real value in (0, 1). lg stands for log2.

Space (bits) Searching time Extraction time

LZ-index [15] z lg u+ 5z lg σ m2d+ (m+ occ) lg z md
−z lg z + o(u) +O(Z)

Gagie et al. [6] 2n lg n+O(z lg u m2 + (m+ occ) lg lg u m+ lg lg u
+z lg z lg lg z)

SLP-index [2,3] n lg u+O(n lgn) (m2 + h(m+ occ)) lgn (m+ h) lg n

ESP-index [13] n lg u+ (1 + ǫ)n lg n (1/ǫ)(m lg n (1/ǫ)(m+ lg u)
+4n+ o(n) +occc lgm lg u) lg∗ u

ESP-index-I n lg u+ n lg n (lg lg n)(m (lg lgn)(m+ lg u)
+2n+ o(n lgn) +occc lgm lg u) lg∗ u

Self-indexes aim at representing a collection of texts in a compressed format
that supports extracting subtexts of arbitrary positions and also provides query
searches on the collection, and are fundamental in modern information retrieval.
However, developing a grammar-based self-index remains a challenge, since a
grammar-compressed text forms a tree structure named parse tree and variables
attached to its nodes do not necessarily encode all portions of a text, which
makes the problem of searching query texts from grammar compressed texts dif-
ficult. Claude et al. [2,3] presented a grammar-based self-index named SLP-index.
SLP-index uses two step approaches: (i) it finds variables called first occurrences
that encode all prefixes and suffixes of a query text by binary searches on com-
pactly encoded CFGs and (ii) then it discovers the remaining occurrences of the
variables. However, finding first occurrences for moderately long queries is com-
putationally demanding because the method needs to perform binary searches as
many times as the query length, which resulted in reducing the practical usage
of their method.

Edit-sensitive parsing (ESP) [4] is an efficient parsing algorithm developed for
approximately computing edit distances with moves between texts. ESP builds
from a given text a parse tree that guarantees upper bounds of parsing discrep-
ancies between different appearances of the same subtext. Maruyama et al. [13]
presented another grammar-based self index called ESP-index on the notion of
ESP. ESP-index represents a parse tree as a directed acyclic graph (DAG) and
then encodes the DAG into succinct data structures for ordered trees and permu-
tations. Unlike SLP-index, it performs top-down searches for finding candidates
of appearances of a query text on the data structure by leveraging the upper
bounds of parsing discrepancies in ESP. However, it has a serious issue on binary
searches for finding appearances of variables.



In this paper, we present an improved ESP-index (ESP-index-I) for fast query
searches. Our main contribution is to develop a novel data structure for encoding
a parse tree built by ESP. Instead of encoding the DAG into two ordered trees
using succinct data structures in ESP-index, ESP-index-I encodes it into a bit
string and an integer array by leveraging the idea behind rank/select dictionaries
for large alphabets [8]. Instead of performing binary searches for finding variables
on data structures in SLP-index and ESP-index, ESP-index-I computes fast
select queries in O(1) time, resulting in faster query searches. Our results and
those of existing algorithms are summarized in Table 1.

Experiments were performed on retrieving query texts from real-world large-
scale texts. The performance comparison with other algorithms demonstrates
ESP-index-I’s superiority.

2 Preliminaries

The length of string S is denoted by |S|, and the cardinality of a set C is
similarly denoted by |C|. The set of all strings over the alphabet Σ is denoted
by Σ∗, and let Σi = {w ∈ Σ∗ | |w| = i}. We assume a recursively enumerable
set X of variables with Σ ∩ X = ∅. The expression a+ (a ∈ Σ) denotes the set
{ak | k ≥ 1}, and string ak is called a repetition if k ≥ 2. Strings x and z are
said to be a prefix and suffix of S = xyz, respectively. In addition, x, y, z are
called substrings of S. S[i] and S[i, j] denote the i-th symbol of string S and the

substring from S[i] to S[j], respectively. lg stands for log2. We let lg(1) u = lg u,

lg(i+1) u = lg lg(i) u, and lg∗u = min{i | lg(i) u ≤ 1}. In practice, we can consider
lg∗u to be constant, since lg∗u ≤ 5 for u ≤ 265536.

2.1 Grammar compression

A CFG is a quadruple G = (Σ, V,D,Xs) where V is a finite subset of X , D is
a finite subset of V × (V ∪ Σ)∗ of production rules, and Xs ∈ V represents the
start symbol. Variables in V are called nonterminals. We assume a total order
over Σ ∪ V . The set of strings in Σ∗ derived from Xs by G is denoted by L(G).
A CFG G is called admissible if for any X ∈ X there is exactly one production
rule X → γ ∈ D and |L(G)| = 1. An admissible G deriving a text S is called a
grammar compression of S. The size of G is the total of the lengths of strings on
the right hand sides of all production rules; it is denoted by |G|. The problem
of grammar compression is formalized as follows:

Definition 1 (Grammar Compression). Given a string w ∈ Σ∗, compute a

small, admissible G that derives only w.

S(D) ∈ Σ∗ denotes the string derived by D from a string S ∈ (Σ ∪ V )∗. For
example, when S = aY Y , D = {X → bc, Y → Xa} and Σ = {a, b, c}, we obtain
S(D) = abcabca. |X |, also denoted by |X(D)|, represents the length of the string
derived by D from X ∈ V .



We assume any production ruleX → γ satisfies |γ| = 2 because any grammar
compression G can be transformed into G′ satisfying |G′| ≤ 2|G|.

The parse tree of G is represented by a rooted ordered binary tree such that
internal nodes are labeled by variables, and the yields, i.e., the sequence of labels
of leaves is equal to w. In a parse tree, any internal node Z ∈ V corresponds to
the production rule Z → XY , and it has a left child labled by X and a right
child labeled by Y . The height of a tree is the length of the longest one among
paths from the root to leaves.

2.2 Phrase and reverse dictionaries

A phrase dictionary is a data structure for directly accessing a digramXiXj from
a given Xk if Xk → XiXj ∈ D. It is typically implemented by an array requiring
2n logn bits for storing n production rules. In this paper, D also represents its
phrase dictionary. A reverse dictionary D−1 : (Σ ∪ X )2 → X is a mapping
from a given digram to a nonterminal symbol. D−1 returns a nonterminal Z
associated with a digram XY if Z → XY ∈ D; otherwise, it creates a new
nonterminal symbol Z ′ /∈ V and returns Z ′. For example, if we have a phrase
D = {X1 → ab,X2 → cd}, then D−1(a, b) returns X1, while D−1(b, c) creates a
new nonterminal X3 and returns it.

2.3 Rank/select dictionaries

Our method represents CFGs using a rank/select dictionary, a succinct data
structure for a bit string B [11] supporting the following queries: rankc(B, i)
returns the number of occurrences of c ∈ {0, 1} in B[0, i]; selectc(B, i) returns
the position of the i-th occurrence of c ∈ {0, 1} in B; access(B, i) returns i-th
bit in B. Data structures with only the |B|+ o(|B|) bit storage to achieve O(1)
time rank and select queries [16] have been presented.

GMR [8] is a rank/select dictionary for large alphabets and supports rank/
select/access queries for general alphabet strings S ∈ Σ∗. GMR uses n logn +
o(n logn) bits while computing both rank and access queries in O(log log |Σ|)
times and also computing select queries in O(1) time. Space-efficient implemen-
tations of GMR are also presented in [1].

3 ESP-index

3.1 Edit-sensitive parsing (ESP)

In this section, we review a grammar compression based on ESP [4], which is
referred to as GC-ESP. The basic idea of GC-ESP is to (i) start from an input
string S ∈ Σ∗, (ii) replace as many as possible of the same digrams in common
substrings by the same variables, and (iii) iterate this process in a bottom-up
manner until S is transformed to a single variable.

In each iteration, GC-ESP uniquely divides S into maximal non-overlapping
substrings such that S = S1S2 · · ·Sℓ and each Si is categorized into one of
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Fig. 1. An example for parsing S = ababababbab by GC-ESP. There are three
non-overlapping substrings S1 = ababa of type2, S2 = bb of type1, and S3 = ab
of type3. They are individually parsed with a common reverse dictionary. The
resulted string is 13241 that is parsed at one higher level.

three types: (1) a repetition of a symbol; (2) a substring not including a type1
substring and of length at least lg∗ |S|; (3) a substring being neither type1 nor
type2 substrings.

At one iteration of parsing Si, GC-ESP builds two kinds of subtrees from
strings XY and XY Z of length two and three, respectively. The first type is a
2-tree corresponding to a production rule in the form of A → XY . The second
type is a 2-2-tree corresponding to production rules in the forms of A → XB
and B → Y Z.

GC-ESP parses Si according to its type. In case Si is a type1 or type3
substring, GC-ESP performs the typical left aligned parsing where 2-trees are
built from left to right in Si and a 2-2-tree is built for the last three symbols if
|Si| is odd, as follows:

– If |Si| is even, GC-ESP builds A → Si[2j − 1, 2j], j = 1, ..., |Si|/2,
– Otherwise, it builds A → Si[2j−1, 2j] for j = 1, ..., (⌊|Si|/2⌋−1), and builds

A → BSi[2j + 1] and B → Si[2j − 1, 2j] for j = ⌊|Si|/2⌋.

In case Si is a type2 substring, GC-ESP further partitions Si into several sub-
strings such that Si = s1s2...sℓ (2 ≤ |sj | ≤ 3) using alphabet reduction [4], which
is detailed below. GC-ESP builds A → sj if |sj | = 2 or builds A → sj [2, 3],
B → sj [1]A otherwise for j = 1, ..., ℓ.

GC-ESP transforms Si to S′

i and parses the concatenated string S′

i (i =
1, . . . , ℓ) at the next level of a parse tree (Figure 1). In addition, GC-ESP grad-
ually builds a phrase dictionary Dk at kth level of a parse tree. The final dic-
tionary D is the union of dictionaries built at each level of a parse tree, i.e.,
D = D1 ∪D2 ∪ ... ∪Dh.

Alphabet reduction: Alphabet reduction is a procedure for partitioning a
string into substrings of length 2 and 3. Given a type2 substring S, consider S[i]
and S[i − 1] represented as binary integers. Let p be the position of the least
significant bit in which S[i] differs from S[i−1], and let bit(p, S[i]) ∈ {0, 1} be the
value of S[i] at the p-th position, where p starts at 0. Then, L[i] = 2p+bit(p, S[i])
is defined for any i ≥ 2. Since S does not contain any repetitions as type2, the
resulted string L = L[2]L[3] . . . L[|S|] does not also contain repetitions, i.e., L



is type2. We note that if the number of different symbols in S is n which is
denoted by [S] = n, clearly [L] ≤ 2 lgn. Setting S := L, the next label string L
is iteratively computed until [L] ≤ lg∗|S|. At the final L∗, S[i] of the original S
is called landmark if L∗[i] > max{L∗[i− 1], L∗[i+ 1]}.

After deciding all landmarks, if S[i] is a landmark, we replace S[i − 1, i] by
a variable X and update the current dictionary with X → S[i − 1, i]. After
replacing all landmarks, the remaining maximal substrings are replaced by the
left aligned parsing.

Because L∗ is type2 and [L∗] ≤ lg∗|S|, any substring of S longer than 2 lg∗|S|
must contain at least one landmark. Thus, we have the following characteristic.

Lemma 1. (Cormode and Muthukrishnan [4]) Determining the closest land-
mark to S[i] depends on only lg∗|S|+ 5 contiguous symbols to the left and 5 to
the right.

This lemma tells us the following. Let S be type2 string containing α as
S = xαyαz. Using Lemma 1, when α is sufficiently long (e.g., |α| ≥ 2 lg∗|S|),
there is a partition α = α1α2 such that |α1| = O(lg∗|S|) and whether α2[i] is
landmark or not is coincident in both occurrences of α.

Thus, we can construct a consistent parsing for all occurrences of α2 in S,
which almost covers whole α except a short prefix α1. Such consistent parsing
can be iteratively constructed for α2 as the next S while it is sufficiently long.

Lemma 2. (Cormode and Muthukrishnan [4]) GC-ESP builds from a string S
a parse tree of height h = O(lg |S|) in O(|S| lg∗|S|) time.

3.2 Algorithms

We present an algorithm for finding all the occurrences of pattern P in S ∈ Σ∗

parsed by ESP. Let TS be the parsing tree for S by ESP and D be the resulted
dictionary for TS . We consider this problem of embedding a parsing tree TP of
P into TS as follows.

First, we construct TP preserving the labeling in D and a new production
rule is generated if its phrase is undefined.

Second, TP is divided into a sequence of maximal adjacent subtrees rooted by
nodes v1, . . . , vk such that yield(v1 · · · vk) = P , where yield(v) denotes the string
represented by the leaves of v and yield(v1 · · · vk) denotes the concatenation of
strings yield(v1), yield(v2), ..., yield(vk).

If z is the lowest common ancestor of v1 and vk, which is denoted by z =
lca(v1, vk), the sequence v1, . . . , vk is said to be embedded into z, denoted by
(v1 · · · vk) ≺ z. When yield(v1 · · · vk) = P , z is called an occurrence node of P .

Definition 2. An evidence of P is defined as a string Q ∈ (Σ ∪ V )∗ of length

k satisfying the following condition: There is an occurrence node z of P iff

there is a sequence v1 · · · vk such that (v1 · · · vk) ≺ z, yield(v1 · · · vk) = P , and

L(v1 · · · vk) = Q where L(v) is the variable of v and L(v1 · · · vk) is the concate-

nation.



An evidence Q transforms the problem of finding an occurrence of P into
that of embedding a shorter string Q into TS , Since a trivial Q with Q = P
always exists, this notion is well-defined. We present an algorithm for extracting
evidences.

Evidence extraction: The evidence Q of P is iteratively computed from
the parsing of P as follows. Let P = αβ for a maximal prefix α belonging to
type1, 2 or 3. For i-th iteration of GC-ESP, α and β of P are transformed
into α′ and β′, respectively. In case α is not type2, define Qi = α and update
P := β′. In this case, Qi is an evidence of α and β′ is an evidence of β. In case
α is type2, define Qi = α[1, j] with j = min{p | p ≥ lg∗|S|, P [p] is landmark}
and update P := xβ′ where x is the suffix of α′ deriving only α[j + 1, |α|]. In
this case, by Lemma 1, Qi is an evidence of α[1, j] and xβ′ is an evidence of
α[j + 1, |α|]β. Repeating this process until |P | = 1, we obtain the evidence of
P as the concatenation of all Qi. We obtain the upper bound of length Q as
follows.

Lemma 3. (Maruyama et al. [13]) There is an evidence Q of P such that Q =
Q1 · · ·Qk where Qi ∈ q+i (qi ∈ Σ ∪ V , qi 6= qi+1) and k = O(lg |P | lg∗|S|).

Thus, we can obtain the time complexity of the pattern finding problem.
Counting, locating, and extracting: Given TS and an evidence Q of P ,

a node z in TS is an occurrence node of P iff there is a sequence v1, . . . , vk such
that (v1, . . . , vk) ≺ z and L(v1 · · · vk) = Q. Thus, it is sufficient to adjacently
embed all subtrees of v1, . . . , vk into TS . We recall the fact that the subtree of v1
is left adjacent to that of v2 iff v2 is a leftmost descendant of right child(lra(v1))
where lra(v) denotes the lowest right ancestor of v, i.e., v is the lowest ancestor
of x such that the path from v to x contains at least one left edge. Because
z = lra(v1) is unique and the height of TS is O(lg |S|), we can check whether
(v1, v2) ≺ z in O(lg |S|) time. Moreover, (v1, v2, v3) ≺ z′ iff (z, v3) ≺ z′ (possibly
z = z′). Therefore, when |Qi| = 1 for each i, we can execute the embedding of
whole Q in t = O(lg |P | lg |S| lg∗|S|) time. For general case of Qi ∈ q+i , the same
time complexity t is obtained in Lemma 4.

Lemma 4. (Maruyama et al. [13]) The time complexity of embedding the evi-
dence of P into TS is O(lg |P | lg |S| lg∗|S|).

Thus, counting P in S is O(|P | lg∗ |P |+occc ·t) where occc is the frequency of
the largest embedded subtree that is called core. With a auxiliary data structure
storing |X |, the length of string derived fromX ∈ V , locating P can be computed
in the same time complexity. Since TS is balanced, the substring extraction of
S[i, i+m] can be computed in O(m+ lg |S|) time.

ESP-index was implemented by LOUDS [5] and permutation [14] with the
time-space trade-off parameter ε ∈ (0, 1), and it supports queries of count-
ing/locating patterns and extracting of substrings.

Theorem 1. (Maruyama et al. [13]) Let |S| = u, |P | = m, and n = |V (G)| with
the GC-ESP G of S. The time for counting and locating is O(1

ε
(m lg n + occc ·

lgm lg u) lg∗u) and the time for extracting substring S[i, i+m] is O(1
ε
(m+lg u))

with (1 + ε)n lg n+ 4n+ n lg u+ o(n) bits of space and any ε ∈ (0, 1).
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Fig. 2. Grammar compression G and its parsing tree TG, DAG representa-
tion DAG(G), and array representation D(G), where Σ = {a, b} and V =
{1, 2, 3, 4, 5, 6}. In DAG(G), the left edges are shown by solid lines. D(G) itself
is an implementation of the phrase dictionary.

4 ESP-index-I

We present ESP-index-I for faster query searches than ESP-index. ESP-index-
I encodes CFGs into a succinct representation by leveraging the idea behind
GMR [8], a rank/select dictionary for large alphabets.

DAG representation: we represent a CFG G as a DAG where Z → XY ∈
P is considered as two directed left edge (Z,X) and right edge (Z, Y ), i.e., G can
be seen as a DAG with a single source and |Σ| sinks. By introducing a super-
sink s and drawing left and right edges from any sink to s, we can obtain the
DAG with a single source/sink equivalent to G. We denote the DAG as DAG(G)
(Figure 2). DAG(G) is decomposed into two spanning trees TL and TR consisting
of the left edges and the right edges, respectively. ESP-index reconstructs G
with a permutation π : V (TL) → V (TR) from (TL, TR, π). Instead, ESP-index-I
reconstructs and traverses G by using GMR.

Succinct encoding of phrase dictionary: For a grammar compression G
with n variables, the set D(G) of production rules is represented by a phrase
dictionary D[D1[1, n], D2[1, n]] such that Xk → XiXj ∈ D(G) iff D1[k] = i
and D2[k] = j. We consider a permutation π : V → V such that π(D1) is
monotonic, i.e., π(D1[i]) ≤ π(D1[i+1]). ThenD is transformed into an equivalent
π(D) = [π(D1), π(D2)] and let D := π(D) (Figure 2). The monotonic sequence
D1 is encoded by the bit vector B(D1) as follows.

B(D1) = 0D1[1]10D1[2]−D1[1]1 · · · 0D1[n]−D1[n−1]1

By this, we can get D1[k] = select1(B(D1), k)−k in O(1) time with 2n+o(n)
bits of space. GMR encodes the sequence D2 into A(D2) with n lgn+ o(n lg n)
bits of space. We can get D2[k] = access(A(D2), k) in O(lg lgn) time. Thus, we
can simulate the phrase dictionaryD by (B(D1), A(D2)). The access/rank/select



Algorithm 1 Construction of ESP-index-I. S ∈ Σ∗: input string, D = ∅: phrase
dictionary.

1: function ESP-index-I

2: while |S| > 1 do

3: D′ := GC-ESP(S) ⊲ phrase dictionary at each height
4: SORT(D′) ⊲ renaming for binary search in D−1

5: D := D ∪D′

6: end while

7: return (B(D1), A(D2))
8: end function

9: function GC-ESP(S)
10: set D = ∅
11: execute GC-ESP s.t. S′(D) = S
12: S := S′

13: return D
14: end function

15: function SORT(D) ⊲ D = [D1[1, n], D2[1, n]]
16: find π : V → V s.t. π(D1) is monotonic ⊲ V = {1, 2, . . . , n}
17: D := [π(D1), π(D2)]
18: end function

on B(D1) support to traverse TL and the same operations on A(D2) support to
traverse TR. Thus, we can traverse the whole tree TS equivalent to DAG(G).

Simulation of reverse dictionary: The improved index, referred as to
ESP-index-I, of string S is denoted by (B(D1), A(D2)). After indexing S, since
the memory for D−1 is released, we must construct GC-ESP of pattern P simu-
lating D−1 by (B(D1), A(D2)) for counting and locating P in S. To remember
D−1, the original ESP-index uses the binary search on TL. On the other hand, we
adopt A(D2) for simulating D−1 by an advantage of response time. Indeed, we
can improve the time O(lg n) to O(lg lgn) for a query. To get D−1(XiXj) = Xk,
we can get the value of k as follows, where let B = B(D1) and A = A(D2).

(1) Let p = select0(B, i)− i and q = select0(B, i+ 1)− (i + 1).
(2) Let r = selectj(A, rankj(A, p) + 1).
(3) k = r if r ≤ q, and no Xk → XiXj exists otherwise.

Since D1 is monotonic, we can restrict the range k ∈ [p, q] by operation (1).
By (2) and (3), we can check if Xj ∈ D2[p, q]. If Xj ∈ D2[p, q], its position
is the required k, and Xj 6∈ D2[p, q], there is no production rule of Xk →
XiXj ∈ D. The execution time of (1), (2), and (3) are O(1), O(lg lg n), and O(1),
respectively. The construction of the ESP-index-I is described in Algorithm 1.

Theorem 2. Counting time of ESP-index-I is O((m+occc lgm lg u) lg lg n lg∗u)
with 2n+ n lgn+ o(n lgn) bits of space.

Proof. By Lemma 2, the time to build a parsing tree TP of pattern P is O(m lg∗ u).
The time to simulate the reverse dictionary is O(lg lg n) per one input. Thus,
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english.200MB (right).
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Fig. 4. Locating time of each method in milliseconds for dna.200MB (left) and
english.200MB (right).

we can find the evidence Q satisfying Lemma 2 in t1 = O(m lg lgn lg∗ u). By
Lemma 4, we can embed Q into TS in O(lgm lg u lg∗ u) time. To simulate this
embedding on (B(D1), A(D2)), the cost to access the parent-child of any node is
O(lg lgn) time. Thus, the time of the embedding on a maximal core of occc times
is t2 = O(occc lgm lg u lg∗ u). Then, the counting time is O(t1 + t2). The size of
the data structures for B(D1) and A(D2) are 2n + o(n) and n lgn + o(n lg n)
bits, respectively.

Theorem 3. With auxiliary n lg u + o(n) bits of space, ESP-index-I supports

locating in the same time complexity and also supports extracting in O((m +
lg u) lg lgn) time for any substring of length m.

Proof. While ESP-index accesses the parent and children of a node in 1/ε time
because it uses a succinct data structure for permutation, ESP-index-I takes
O(lg lgn) time. Thus, the time complexity is obtained from theorem 1 by re-
placing the trade-off parameter 1/ε in ESP-index by lg lg n.
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Fig. 5. The number of occurrences of query text for dna.200MB (left) and en-
glish.200MB (right).
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Fig. 6. Substring extraction time of each method in milliseconds for dna.200MB
(left) and english.200MB (right).

5 Experiments

5.1 Setups

We evaluated ESP-index-I in comparison to ESP-index, SLP-index, LZ-index
on one core of an eight-core Intel Xeon CPU E7-8837 (2.67GHz) machine with
1024 GB memory. ESP-index is the previous version of ESP-index-I. SLP-index
and LZ-index are state-of-the-arts of grammar-based and LZ-based indexes, re-
spectively. SLP-index used RePair for building SLPs. We used LZ-index-1 as an
implementation of LZ-index. We also compared ESP-index-I to FM-index, a self-
index for general texts, which is downloadable from https://code.google.com/p/fmindex-plus-plus/.
We implemented ESP-index-I in C++ and the other methods are also imple-
mented in C++.We used benchmark texts named dna.200MB of DNA sequences
and english.200MB of english texts which are downloadable from http://pizzachili.dcc.uchile.cl/texts.html.

https://code.google.com/p/fmindex-plus-plus/
http://pizzachili.dcc.uchile.cl/texts.html


Table 2. Memory in megabytes for dna.200MB and english.200MB.

ESP-index-I ESP-index SLP-index LZ-index FM-index

dna.200MB 156 157 214 208 325
english.200MB 165 162 209 282 482

Table 3. Construction time in seconds for dna.200MB and english.200MB.

ESP-index-I ESP-index SLP-index LZ-index FM-index

dna.200MB 81.8 82.96 1, 906.63 64.869 87.7
english.200MB 93.36 93.58 1, 906.63 100.624 94.09

We also used four human genomes1234 of 12GB DNA sequences and wikipedia5

of 7.8GB XML texts as large-scale repetitive texts.

5.2 Results on benchmark data

Figure 3 and 4 show the counting and locating time for query texts consisting
of lengths from 10 to 1, 000 in dna.200MB and english.200MB. In addition, the
number of occurrences of query texts are presented in Figure . Since the count-
ing and locating time of LZ-index depends quadratically on the query length,
counting and locating query texts longer than 200 were slow on dna.200MB and
english.200MB. SLP-index was also slow for locating query texts longer than 200,
since SLP-index performs as many binary searches as query length for finding
the first occurrences of variables. ESP-index-I and ESP-index were faster than
LZ-index and SLP-index for counting and locating query texts, which showed
that top-down searches of ESP-index-I and ESP-index for finding occurrences of
variables encoding query texts were effective. ESP-index-I was from 1.4 to 4.3
times faster than ESP-index with respect to counting and locating time, which
demonstrated our encoding of a parse tree by ESP were effective. The counting
and locating time of ESP-index-I was compatitive with that of FM-index but
ESP-index-I showed a higher compressibility for repetitive texts than FM-index.

Figure 6 shows extraction time of subtexts for fixed positions and lengths.
LZ-index based on LZ77 was fastest among all methods. On the otherhand,
ESP-index-I was one of the fastest method among grammar-based self-indexes
on dna.200MB and english.200MB.

Table 2 shows memory usage of each method in megabytes for dna.200MB
and english.200MB. The methods except FM-index archived small memory,

1 ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/hs_ref_GRC37_chr*.fa.gz
2 ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/hs_alt_HuRef_chr*.fa.gz
3 ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/fasta/chromosome_*.fa.gz
4 ftp://public.genomics.org.cn/BGI/yanhuang/fa/chr*.fa.gz
5 http://dumps.wikimedia.org/enwikinews/20131015/enwikinews-20131015-pages-
meta-history.xml.bz2

ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/hs_ref_GRC37_chr*.fa.gz
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/hs_alt_HuRef_chr*.fa.gz
ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/fasta/chromosome_*.fa.gz
ftp://public.genomics.org.cn/BGI/yanhuang/fa/chr*.fa.gz


Table 4. Counting, locating, compression and indexing times in seconds, and
index and position size in megabytes for ESP-index-I on large-scale texts.

genome wikipedia

|P | 200 1, 000 200 1, 000

Counting time (msec) 1.06 2.29 139.56 13.04
Locating time (msec) 1.10 2.33 167.40 16.69

Compression time (sec) 4, 384 2, 347
Indexing time (sec) 567 74
Index size (MB) 3, 888 594
Position size (MB) 1, 526 246

genomes wikipedia
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Fig. 7. Substring extraction time of four human genomes of 12GB DNA se-
quences (left) and wikipedia of 7.8GB english texts (right).

which demonstrated their high compressive abilities for texts. The memory usage
of ESP-index-I was smallest among all methods, and it used 156MB and 165MB
for dna.200MB and english.200MB, respectively. Since FM-index is a self-index
for general texts, the memory usage of FM-index was largest among methods.
Construction time is presented in Table 3.

5.3 Results on large-scale repetitive texts

We tried ESP-index-I on large-scale repetitive texts. The other methods except
ESP-index-I did not work on these large texts, because they are applicable to
only 32 bits inputs. Table 4 shows the results for counting and locating query
texts of lengths of 200 and 1, 000, construction time and encoding size. Figure 7
shows extraction time of substring of lengths from 10 to 1, 000. These results
showed an applicability of ESP-index-I to real world repetitive texts.

6 Conclusion

We have presented a practical self-index for highly repetitive texts. Our method
is an improvement of ESP-index and performs fast query searches by traversing a



parse tree encoded by rank/select dictionaries for large alphabets. Future work is
to develop practical retrieval systems on our self-index. This would be beneficial
to users for storing and processing large-scale repetitive texts.
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