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Abstract. Many applications produce massive complex networks whose
analysis would benefit from parallel processing. Parallel algorithms, in
turn, often require a suitable network partition. For solving optimization
tasks such as graph partitioning on large networks, multilevel methods
are preferred in practice. Yet, complex networks pose challenges to es-
tablished multilevel algorithms, in particular to their coarsening phase.
One way to specify a (recursive) coarsening of a graph is to rate its edges
and then contract the edges as prioritized by the rating. In this paper
we (i) define weights for the edges of a network that express the edges’
importance for connectivity, (ii) compute a minimum weight spanning
tree Tm w. r. t. these weights, and (iii) rate the network edges based
on the conductance values of Tm’s fundamental cuts. To this end, we
also (iv) develop the first optimal linear-time algorithm to compute the
conductance values of all fundamental cuts of a given spanning tree.
We integrate the new edge rating into a leading multilevel graph par-
titioner and equip the latter with a new greedy postprocessing for op-
timizing the maximum communication volume (MCV). Experiments on
bipartitioning frequently used benchmark networks show that the post-
processing already reduces MCV by 11.3%. Our new edge rating further
reduces MCV by 10.3% compared to the previously best rating with the
postprocessing in place for both ratings. In total, with a modest increase
in running time, our new approach reduces the MCV of complex network
partitions by 20.4%.

Keywords: Graph coarsening, multilevel graph partitioning, complex net-
works, fundamental cuts, spanning trees

1 Introduction

Complex networks such as social networks or web graphs have become a focus
of investigation recently [7]. Such networks are often scale-free, i. e. they have
a power-law degree distribution with many low-degree vertices and few high-
degree vertices. They also have a small diameter (small-world property), so that
the whole network is discovered within a few hops from any vertex. Complex net-
works arise in a variety of applications; several of them generate massive data
sets. As an example, the social network Facebook currently contains a billion
active users (http://newsroom.fb.com/Key-Facts). On this scale many algorith-
mic tasks benefit from parallel processing. The efficiency of parallel algorithms
on huge networks, in turn, is usually improved by graph partitioning (GP).
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Given a graph G = (V,E) and a number of blocks k > 0, the GP problem asks
for a division of V into k pairwise disjoint subsets V1, . . . , Vk (blocks) such that

no block is larger than (1+ε)·
⌈
|V |
k

⌉
, where ε ≥ 0 is the allowed imbalance. When

GP is used for parallel processing, each processing element (PE) usually receives
one block, and edges running between two blocks model communication between
PEs. The most widely used objective function (whose minimization is NP-hard)
is the edge cut, the total weight of the edges between different blocks. However,
it has been pointed out more than a decade ago [12] that the determining factor
for modeling the communication cost of parallel iterative graph algorithms is the
maximum communication volume (MCV), which has received growing attention
recently, e. g. in a GP challenge [1]. MCV considers the worst communication
volume taken over all blocks Vp (1 ≤ p ≤ k) and thus penalizes imbalanced
communication: MCV (V1, . . . , Vk) := maxp

∑
v∈Vp

|{Vi | ∃{u, v} ∈ E with u ∈
Vi 6= Vp}|. Note that parallel processing is only one of many applications for
graph partitioning; more can be found in recent surveys [3, 4].

All state-of-the-art tools for partitioning very large graphs in practice rely on
the multilevel approach [4]. In the first phase a hierarchy of graphs G0, . . . , Gl is
built by recursive coarsening. Gl is supposed to be very small in size, but similar
in structure to the input G0. In the second phase a very good initial solution for
Gl is computed. In the final phase, the solution is prolongated to the next-finer
graph, where it is improved using a local improvement algorithm. This process
of prolongation and local improvement is repeated up to G0.

Partitioning static meshes and similar non-complex networks this way is fairly
mature. Yet, the structure of complex networks (skewed degree distribution,
small-world property) distinguishes complex networks from traditional inputs
and makes finding small cuts challenging with current tools.

One reason for the difficulties of established multilevel graph partitioners
is the coarsening phase. Most tools rely on edge contractions for coarsening.
Traditionally, only edge weights have guided the selection of the edges to be
contracted [16]. Holtgrewe et al. [13] recently presented a two-phase approach
that makes contraction more systematic by separating two issues: An edge rating
and a matching algorithm. The rating of an edge indicates how much sense it
makes to contract the edge. The rating then forms the input to an approximate
maximum weight matching algorithm, and the edges of the resulting matching
are contracted. As one contribution of this paper, we define a new edge rating
geared towards complex network partitions with low MCV.

Outline and Contribution. After the introduction we sketch the state of the
art (Section 2) and settle necessary notation (Section 3). Our first technical
contribution, described briefly in Section 4, results from our goal to minimize
MCV rather than the edge cut: We equip a leading multilevel graph partitioner
with greedy postprocessing that trades in small edge cuts for small MCVs.

Our main contributions follow in Sections 5 and 6. The first one is a new edge
rating, designed for complex networks by combining local and non-local infor-
mation. Its rationale is to find moderately balanced cuts of high quality quickly
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(by means of the clustering measure conductance [15] and its loose connection
to MCV via isoperimetric graph partitioning [11]) and to use this information
to indicate whether an edge is part of a small cut or not. Finding such cuts is
done by evaluating conductance for all fundamental cuts of a minimum span-
ning tree of the input graph with carefully chosen edge weights. (a fundamental
cut is induced by the removal of exactly one spanning tree edge, cf. Section 3).
The second main contribution facilitates an efficient computation of our new
edge rating. We present the first optimal linear-time algorithm to compute the
conductance values of all fundamental cuts of a spanning tree.

We have integrated both MCV postprocessing and our new edge rating
ex cond(·) into KaHIP [21, 22], a state-of-the-art graph partitioner with a ref-
erence implementation of the edge rating ex alg(·), that yielded the best quality
for complex networks so far (see Section 2).

Experiments in Section 7 show that greedy MCV postprocessing improves
the partitions of our complex network benchmark set in terms of MCV by 11.3%
on average with a comparable running time.

Additional extensive bipartitioning experiments (MCV postprocessing in-
cluded) show that, compared to ex alg(·), the fastest variant of our new edge
rating further improves the MCVs by 10.3%, at the expense of an increase in
running time by a factor of 1.79. Altogether, compared to previous work on parti-
tioning complex networks with state-of-the-art methods [20], the total reduction
of MCV by our new techniques amounts to 20.4%.

2 State of the Art

Multilevel graph partitioners such as METIS [16] and KaHIP [21, 22] (more
are described in recent surveys [3, 4]) typically employ recursive coarsening by
contracting edges, which are often computed as those of a matching. Edge ratings
are important in guiding the matching algorithm; a successful edge rating is

expansion∗2({u, v}) = ω({u, v})2/(c(u)c(v)), (2.1)

where the weights of the vertices u, v ∈ V and of the edges {u, v} ∈ E are given
by c(·) and ω(·), respectively [13].

To broaden the view of the myopic rating above (it does not look beyond its
incident vertices), Safro et al. [20] precompute the algebraic distance ρ{u,v} [5]
for the end vertices of each edge {u, v} and use the edge rating

ex alg({u, v}) = (1/ρ{u,v}) · expansion∗2(u, v) (2.2)

For graphs with power-law degree distributions, ex alg(·) yields considerably
higher partition quality than expansion∗2(·) [20]. This is due to the fact that
algebraic distance expresses a semi-local connection strength of an edge {u, v} [5].
Specifically, ρ{u,v} is computed from R randomly initialized vectors that are
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smoothed by a Jacobi-style over-relaxation for a few iterations. The idea is that
the vector entries associated with well-connected vertices even out more quickly
than those of poorly connected vertices. Thus, a high value of ρ{u,v} indicates
that the edge {u, v} constitutes a bottleneck and should not be contracted.

Another strategy for matching-based multilevel schemes in complex networks
(e. g. for agglomerative clustering [8]) is to match unconnected vertices at 2-hop
distance in order to eliminate star-like structures. Also, alternatives to matching-
based coarsening exist, e. g. weighted aggregation schemes [6, 18].

Pritchard and Thurimella [19] use a spanning tree to sample the cycle space of
a graph in a uniform way and thus find small cuts (consisting of a single edge, two
edges or a cut vertex) with high probability [19]. Our method uses a minimum
weight spanning tree on a graph with carefully chosen edge weights. Moreover,
we sample the cut-space. The aim of the sampling is to create a collection C of
moderately balanced cuts which form the basis of our new edge rating.

We integrate our new algorithms into KaHIP [21, 22]. KaHIP focuses on so-
lution quality and has been shown recently to be a leading graph partitioner for a
wide variety of graphs such as road networks, meshes, and complex networks [23].
It implements several advanced multilevel graph partitioning algorithms, meta-
heuristics, and sophisticated local improvement schemes.

3 Preliminaries

Let G = (V,E, ω) be a finite, undirected, connected, and simple graph. Its edge
weights are given by ω : E 7→ R+. We write ωu,v for ω({u, v}) and extend ω to
subsets of E through ω(E′) =

∑
e∈E′ ω(e).

For subsets V1, V2 of V with V1 ∩ V2 = ∅, the set S(V1, V2) consists of those
edges in E that have one end vertex in V1 and the other end vertex in V2. If, in
addition to V1∩V2 = ∅, it holds that (i) V = V1∪V2 and (ii) V1, V2 6= ∅, then the
pair (V1, V2) is called a cut of G, and S(V1, V2) is called the cut-set of (V1, V2).
The weight of a cut (V1, V2) is given by ω(S(V1, V2)). The volume of any subset
V ′ of V is the total weight of the edges incident on V ′ (which equals the sum
over the weighted degrees of the vertices in V ′):

vol(V ′) = ω({e = {v′, v} ∈ E | v′ ∈ V ′, v ∈ V }), (3.1)

Definition 3.1 (Fundamental cut, cut-set ST (eT ), cond(eT , T ))
Let T be a spanning tree of G, and let eT ∈ E(T ). If T1 and T2 are the connected

components (trees) of the graph (V,E(T ) \ {eT }), then (V (T1), V (T2)) is the
fundamental cut of G with respect to T and eT , and

ST (eT ) = S(V (T1), V (T2)). (3.2)

is the fundamental cut-set of G with respect to T and eT . Conductance is a
common quality measure in graph clustering [15]. Its value for (V (T1), V (T2)) is

cond(eT , T ) = cond(V1, V2) =
ω(ST (eT ))

min{vol(V (T1)), vol(V (T2))}
(3.3)
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4 Greedy MCV Optimization

The ultimate applications we target with our graph partitioning algorithm are
iterative parallel algorithms executed on complex networks. As argued in Sec-
tion 1, the maximum communication volume (MCV) is a more accurate opti-
mization criterion than the edge cut. The graph partitioner KaHIP has so far
solely focused on the edge cut, though. That is why, as a new feature, we equip
KaHIP with a postprocessing that greedily optimizes MCV. This postprocessing
is executed after local improvement on the finest level of the multilevel hierar-
chy and works in rounds. In each round, we iterate over all boundary vertices
of the input partition in a random order and check whether moving the vertex
from its own block to the opposite block reduces or keeps the MCV value. If
this is the case, the current vertex will be moved to the opposite block. One
round of the algorithm can be implemented in O(|E|) time (see Section C in the
appendix for more details). The total number of rounds of the algorithm is a
tuning parameter. After preliminary experiments we have set it to 20.

5 A New Conductance-based Edge Rating for
Partitioning

An edge rating in a multilevel graph partitioner should yield a low rating for
an edge e if e is likely to be contained in the cut-set of a “good” cut, e. g. if the
cut-set consists of a bridge.

In our approach a good cut is one that (i) has a low conductance and (ii) is
at least moderately balanced. In complex networks (i) does not always imply (ii)
(see below). A loose connection between conductance and MCV in bipartitions
can be established via isoperimetric graph partitioning [11]. Our approach to
define an edge rating and use it for partitioning is as follows.

1. Generate a collection C of moderately balanced bipartitions (cuts of G) that
contain cuts with a low conductance value.

2. Define a measure Cond(·) such that Cond(e) is low [high] if e is [not] con-
tained in the cut-set of a cut in C with low conductance.

3. Instead of multiplying the edge rating expansion∗2({u, v}) with the factor
(1/ρ{u,v}) as in [20], we replace one of the two (identical) myopic factors
ω({u, v}) in expansion∗2({u, v}) by the more far-sighted factor Cond(·). This
yields the new edge rating

ex cond({u, v}) = ω({u, v}) Cond({u, v})/(c(u)c(v)) (5.1)

The higher Cond(e), the higher ex cond(e), and thus the higher the chances
for e to be contracted during coarsening.

4. Run a multilevel graph partitioner capable of handling edge ratings such as
KaHIP with ex cond(·).

To specify ex cond(·), we need to define C and Cond(·).
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Fig. 1. (a) Example of MST (red) in GBIS. For the green arrow see the text. (b) Vertex
attributes intraWeight and interWeight . Tree T is formed by the black edges, and the
subtree with root u is contained in the shaded area. The weights of the blue and green
edges contribute to intraWeight [u], and the weights of the red edges contribute to
interWeight [u].

Specifics of C. For the definition of C, we resort to a basic concept of graph-based
clustering, i. e. the use of minimum weight spanning trees (MSTs). We describe
this concept in the context of graph-based image segmentation (GBIS) [9, 25] for
illustration purposes (see Figure 1a).

In GBIS one represents an image by a graph G whose vertices [edges] rep-
resent pixels [neighborhood relations of pixels]. The edges are equipped with
weights that reflect the contrast between the gray values at the edges’ end ver-
tices. An MST Tm of G with respect to contrast has the following property
(see [14, Thm. 4.3.3]). The contrast value associated with any e ∈ E(Tm) is
minimal compared to the contrast values of the edges in the fundamental cut-set
STm(e) (see Eq. 3.2). Thus, for any e ∈ E(Tm) with a high contrast value (see
the green arrow in Figure 1a), the fundamental cut STm(e) yields a segmentation
into two regions with a high contrast anywhere on the common border.

Here, we arrive at a collection C of |V | − 1 moderately balanced bipartitions
(cuts) of G by (i) computing connectivity-based contrast values for the edges of
G, (ii) computing an MST Tm of G w. r. t. these values, and (iii) letting C consist
of G’s fundamental cuts w. r. t. Tm. The contrast value of an edge e = {u, v}
should be low [high] if the edge is indispensable for “many” connections via
shortest paths. Thus, the higher the contrast, the stronger the negative effect on
G’s connectivity if e is cut, and thus the more reasonable it is to cut e. To define
the contrast values, we generate a random collection T of breadth-first-traversal
(BFT) trees. A tree in T is formed by first choosing a root randomly. As usual,
we let the trees grow out of the roots using a queue, but we process the edges
incident on a vertex in a randomized order. Alternatively, SSSP trees may be
used if edge weights are to be included.

Let nT (u, v) denote the number of trees in T that contain e and in which u
is closer to the tree’s root than v (u and v cannot have the same distance to the
root). We set the contrast value of an edge {u, v} to

γ({u, v}) = min{nT (u, v), nT (v, u)}. (5.2)

Just considering the number of trees in T which contain e, turned out to
yield poorer partitions than using Eq. 5.2. We believe that this is due to small
subgraphs which are connected to the graphs’ “main bodies” via very few edges.
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Just considering the number of trees in T which contain such an edge would
result in a high contrast of the edge although the cut is far from moderately
balanced. Even worse, the conductance of the cut may be small (e. g. if the
cut-set contains only one edge). This would protect edges in cut-sets of very
unbalanced cuts from being contracted — an undesired feature.

Specifics of Cond(·). Our plan is to define a measure Cond(·) such that Cond(e) is
low [high] if e is [not] contained in the cut-set of a cut in C with low conductance.
Hence, we set

Cond(e) = min
C∈C,e∈S(C)

(cond(C)), (5.3)

where S(C) denotes the cut-set of the cut C. Let FCe denote the set of edges
in the (fundamental) cycle that arises if e is inserted into Tm. Then, the cuts
C ∈ C with e ∈ S(C) (see Eq. 5.3) are precisely the fundamental cuts ST (eT )
(see Eq. 3.2) with eT ∈ FCe and eT 6= e. Note that e is the only edge in FCe

that is not in E(Tm). This suggests to first compute the Cond-values for all
edges eT ∈ E(Tm) as specified in Section 6. For e /∈ E(Tm) the value of Cond(e)
is then obtained by forming the minimum of the Cond-values of FCe \ {e}. If
e = {u, v}, then FCe \ {e} is the set of edges on the unique path in Tm that
connects u to v.

6 An O(|E|)-Algorithm for Computing All cond(eT , T )

In this section we demonstrate how, for a rooted given spanning tree T of a
graph G(V,E), one can compute all conductance values cond(eT , T ), eT ∈ E(T ),
in time O(|E|) (the root can be chosen randomly). This algorithm facilitates an
efficient computation of the edge rating introduced in the previous section. The
key to achieving optimal running time is to aggregate information on fundamen-
tal cuts during a postorder traversal of T . The aggregated information is kept
in the three vertex attributes subtreeVol , intraWeight and interWeight defined
in Definition 6.1 below. Technically, the three vertex attributes take the form of
arrays, where indices represent vertices.

Definition 6.1 Let CT (u) be the children of vertex u in T . Moreover, let T (u)
denote the subtree rooted at u (including u), and let D(u) ( descendants of u)
denote the set that contains the vertices of T (u), i. e. D(u) = V (T (u)). We use
the following three vertex attributes to aggregate information that we need to
compute the conductance values:
– subtreeVol [u] = vol(D(u)).
– intraWeight [u] equals twice the total weight of all edges e = {v, w} with (i)
v, w ∈ D(u), (ii) v, w 6= u and (iii) the lowest common ancestor of v and w
in T is u (blue edges in Figure 1b) plus the total weight of all edges not in
T with one end vertex being u and the other end vertex being contained in
D(u) (green edges in Figure 1b).
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Algorithm 1 Procedure NonLeaf(T, u) called during postorder traversal of T

1: parentEdge← undefined edge
2: for all f = {u, t} ∈ E do
3: if f ∈ E(T ) then
4: if label[u] < label[t] then
5: subtreeVol [u]← subtreeVol [u] + subtreeVol [t]
6: interWeight [u]← interWeight [u] + interWeight [t]
7: else
8: parentEdge← f
9: end if

10: else
11: if ((label[t] < label[u]) ∨ (label[t] > maxLabelDescendants[u])) then
12: . equivalent to test if t /∈ D(u)
13: lca← LCA(T, u, t)
14: intraWeight [lca]← intraWeight [lca] + ω(f)
15: interWeight [u]← interWeight [u] + ω(f)
16: end if
17: end if
18: end for
19: subtreeVol [u]← subtreeVol [u] + vol({u})
20: interWeight [u]← interWeight [u]− intraWeight [u];
21: if parentEdge 6= undefined edge then
22: cond(parentEdge, T )← interWeight[u]+ω(parentEdge)

min{subtreeVol[u],vol(V )−subtreeVol[u]}
23: end if

– interWeight [u] equals the total weight of all edges not in T with exactly one
end vertex in D(u) (red edges in Figure 1b).

If u has a parent edge eT , Eq. 3.3 takes the form

cond(eT , T ) =
interWeight[u] + ω(eT )

min{subtreeVol [u], vol(V )− subtreeVol [u]}
(6.1)

When computing subtreeVol , intraWeight and interWeight , we employ two
vertex labellings (stored in arrays indexed by the vertices): label[u] indicates the
preorder label of u in T , and maxLabelDescendants[u] indicates the maximum
of label[t] over all t ∈ T (u). We also need lowest common ancestors (LCAs).
Queries LCA(T , u, v), i. e. the LCA of u and v on T , require constant time after
an O(n)-time preprocessing [2].

We start by initializing labels and vertex attributes to arrays of length |V |
with all entries set to 0 (for details see Algorithm 2 in Section A in the appendix).
Then we compute the entries of label and maxLabelDescendants in a single
depth-first traversal of T and perform the preprocessing for LCA(·, ·, ·). Finally,
we call a standard postorder traversal in T starting at the root of T . When
visiting a vertex, either one of the subroutines Leaf(·) (see Algorithm 3 in
Section A of the appendix) or NonLeaf(·) (see Algorithm 1) is called depending
on the vertex type.
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If u is a leaf, Algorithm 3 sets subtreeVol [u] to vol({u}) and interWeight [u]
to the total weight of all edges in E \E(T ) that are incident on u. Likewise, the
entry intraWeight [LCA(T, u, t)] is updated for any t with {u, t} /∈ E(T ).

If u is not a leaf (Algorithm 1), and if u has a parent edge in T , this edge is
found in line 8 and the corresponding conductance value is computed in line 22
using subtreeVol [u] and interWeight [u]. The entry intraWeight [LCA(T, u, t)] is
updated multiple times until the postorder traversal ascends from u towards the
root of T (line 14). The update of interWeight is justified in the proof of Theo-
rem 6.2 (see Section B (appendix), it also contains the proof of Proposition 6.3).
Eq. 6.5 in Theorem 6.2 guarantees that the conductance values computed in line
22 are correct.

Theorem 6.2 After having finished processing u ∈ V in a traversal of T , the
equalities given below hold (where in the last one we assume that u is not the
root of T and that eT is the parent edge of u in T ).

subtreeVol [u] = vol(D(u)), (6.2)

intraWeight [u] =
∑

ci 6=cj∈C(u)

ω(S(D(ci), D(cj))) (6.3)

+ ω(S(D(u) \ {u}, {u}) \ E(T )) and (6.4)

interWeight [u] = ω(ST (eT ))− ω(eT ). (6.5)

Proposition 6.3 Given a rooted spanning tree T of G = (V,E), the computa-
tion of all cond(eT , T ), eT ∈ E(T ), takes O(|E|) time.

7 Experimental Results

Name #vertices #edges

p2p-Gnutella 6 405 29 215
PGPgiantcompo 10 680 24 316
email-EuAll 16 805 60 260
as-22july06 22 963 48 436
soc-Slashdot0902 28 550 379 445
loc-brightkite edges 56 739 212 945
loc-gowalla edges 196 591 950 327
coAuthorsCiteseer 227 320 814 134
wiki-Talk 232 314 1 458 806
citationCiteseer 268 495 1 156 647
coAuthorsDBLP 299 067 977 676
web-Google 356 648 2 093 324
coPapersCiteseer 434 102 16 036 720
coPapersDBLP 540 486 15 245 729
as-skitter 554 930 5 797 663

Table 7.1. Complex networks used
as benchmark set.

Approach and settings. The multilevel
partitioner within the KaHIP package
has three different algorithm configura-
tions: strong, eco and fast. We use the eco
configuration since this configuration was
chosen in [20], too. The variable ε in the
balance constraint is set to the common
value 0.03.

We evaluate the postprocessing and
compare ex cond with ex alg on the basis
of the 15 complex networks listed in Ta-
ble 7.1 and further described in Table D.1
(appendix). The networks are from two
popular archives [1, 17]. The same net-
works have been used previously in [20]
to evaluate ex alg.
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Table 7.2. Geometric means of the performance quotients minMCV, avgMCV and
avgTime over all networks in Table 7.1. Number of trees: 20, 100 and 200. Reference is
the edge rating ex alg. A quotient < 1.0 means that ex cond yields better results than
ex alg.

minMCV avgMCV avgTime

Ratios ex cond20 / ex alg 0.892 0.897 1.793

Ratios ex cond100 / ex alg 0.874 0.893 5.278

Ratios ex cond200 / ex alg 0.865 0.890 9.411

All computations are done on a workstation with two 8-core Intel(R) Xeon(R)
E5-2680 processors at 2.70GHz. Our code is implemented in C/C++ and com-
piled with GCC 4.7.1. Note that we do not exploit parallelism here and run
sequential experiments only. First of all, we focus in this paper on solution qual-
ity, not on speed. Secondly, the standard of reference, ex alg, is also implemented
sequentially.

Since the results produced by KaHIP depend on many factors including
random seeds, we perform 50 runs with different seeds for each network and
compute the following three performance indicators:

– minMCV and avgMCV : minimal and average MCV found by KaHIP.
– minCut and avgCut: minimal and average cut found by KaHIP.
– avgT ime: average time KaHIP needs for the complete partitioning process.

Postprocessing results. For ex alg, the average reduction of avgMCV due to
postprocessing amounts to 11.3% (see Table E.1 in Section E of the appendix).
Since the postprocessing trades in small edge cuts for small MCVs, values for
minMCV and avgMCV [minCut and avgCut] are with [without] postprocess-
ing. The increase in running time due to postprocessing is negligible.

Edge rating results. Intriguingly, using an asymptotically optimal Range Min-
imum Query (RMQ) code (by Fischer and Heun [10]) within ex cond for the
algorithms in Section 6 does not decrease the running time. The straightfor-
ward asymptotically slower algorithm is slightly faster (1.1% in total) in our
experiments. To investigate this effect further, we compare the results on a set
of non-complex networks, Walshaw’s graph partitioning archive [24]. Again, the
implementation of the (in theory faster) RMQ algorithm does not play out, run-
ning time and quality remain comparable. Therefore, the running times in all
tables refer to the implementation not using the Fischer/Heun RMQ code.

The edge rating ex cond depends on the number of random spanning trees,
i. e. |T |. To make this clear we write ex cond|T | instead of ex cond.

For a given network we measure the quality of the edge rating ex cond|T |
through (three) quotients of the form (performance indicator using ex cond|T |
divided by the same performance indicator using ex alg). Tables E.2, E.3, and E.4
in Section E of the appendix show the performance quotients of ex cond20,
ex cond100 and ex cond200. The geometric means of the performance quotients
over all networks are shown in Table 7.2.

10



As the main result we state that buying quality through increasing |T | is
expensive in terms of running time. The rating ex cond20 already yields avgMCV
that is 10.3% lower than avgMCV from ex alg — at the expense of a relative
increase in running time by only 1.79. The total reduction of average MCV
from postprocessing and replacing ex alg by ex cond20 amounts to 20.4% (see
Tables E.1 and E.3 in the appendix).

It is further interesting to note that, when we omit the postprocessing step
and compare the average edge cut instead of MCV, ex alg and ex cond perform
comparably well. While ex cond yields a slightly better minimum cut, ex alg
yields a slightly better average cut (see Table E.5 in Section E of the appendix).

8 Conclusions and Future Work

Motivated by the deficits of coarsening complex networks during multilevel graph
partitioning, we have devised a new edge rating for guiding edge contractions.
The new rating of an edge indicates whether it is part of a good moderately
balanced conductance-based cut or not. To compute the necessary conductance
values efficiently, we have developed the first linear-time algorithm to compute
the conductance values of all fundamental cuts of a spanning tree. Our evaluation
shows a significant improvement over a previously leading code for partitioning
complex networks. The new edge rating and additional greedy postprocessing
combined result in a 20.4% better maximum communication volume.

We would like to stress that good coarsening is not only of interest for graph
partitioning, but can be employed in many other methods and applications that
exploit hierarchical structure in networks. Future work should investigate the
concurrence of the contrast γ and the conductance values Cond — possibly
replacing γ by an even better contrast yet to be found. Our overall coarsening
scheme is agnostic to such a replacement and would require no further changes.
Moreover, we would like to extend our methods to an arbitrary number of blocks.
While the proposed edge rating should work out of the box, the greedy MCV
minimization has to be adapted to work effectively for a larger number of blocks.

Acknowledgments. We thank Johannes Fischer for providing an implementation
of the Range Minimum Query method presented in [10].
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A Pseudocode of Algorithms in Section 6

Algorithm 2 Given a spanning tree T of G = (V,E) with root r, compute
cond(eT , T ) for all eT ∈ E(T )

1: Set label,maxLabelDescendants, subtreeVol , intraWeight , interWeight to 0
2: Compute label[u] and maxLabelDescendants[u] for all u ∈ V .
3: Perform LCA preprocessing
4: Postorder(T , r)

Algorithm 3 Procedure Leaf(T, u) called during postorder traversal of T

1: subtreeVol [u]← vol({u})
2: parentEdge← undefined edge
3: for all f = {u, t} ∈ E do
4: if f ∈ E(T ) then
5: parentEdge← f
6: else
7: lca←LCA(T, u, t)
8: intraWeight [lca]← intraWeight [lca] + ω(f)
9: interWeight [u]← interWeight [u] + ω(f)

10: end if
11: end for
12: if parentEdge 6= undefined edge then
13: cond(parentEdge, T )← interWeight[u]+ω(parentEdge)

min{subtreeVol[u],vol(V )−subtreeVol[u]}
14: end if

B Proofs of Section 6

B.1 Proof of Theorem 6.2

Proof. We prove Eq.s 6.2, 6.4 and 6.5 one after the other. Colors correspond to
the edge types introduced in Definition 6.1.

1. Due to line 1 of Algorithm 3, subtreeVol [u] = vol({u}) = vol(D(u)) for any
leaf u of T . If u is not a leaf of T , we proceed by induction. Specifically,
we assume inductively subtreeVol [ci] = vol(D(ci)) for all children ci of u.
Due to lines 5 and 19 of Algorithm 1, subtreeVol [u] =

∑
ci∈C(u) vol(D(ci)) +

vol({u}) = vol(D(u)).

2. Due to line 8 of Algorithm 3 and line 14 of Algorithm 1,
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intraWeight [u] =
∑

(ωv,t | v ∈ D(ci) for some ci ∈ C(u),

{v, t} ∈ E \ E(T ), LCA(v, t) = u)

=
∑

(ωv,t | v ∈ D(ci) for some ci ∈ C(u), t ∈ D(cj))

for some cj ∈ C(u), cj 6= ci +∑
(ωv,u | v ∈ D(ci) for some ci ∈ C(u))

{v, u} ∈ E \ E(T ))

=
∑

ci 6=cj∈C(u)

ω(S(D(ci), D(cj)))+

ω((E \ E(T )) ∩ S(D(u) \ {u}, {u})).

Note that a blue edge contributes twice to intraWeight [u] since it is encoun-
tered from both endpoints. A green edge, on the other hand, contributes
only once.

3. Due to line 9 of Algorithm 3, interWeight [u] =
∑

e={u,t},e∈E\E(T ) ω(e) =

ω(ST (eT ))−ω(eT ) for any leaf u of T . If u is not a leaf of T , let ei = {u, ci}
be the edges between u and its children ci. In particular, ei ∈ E(T ). By
induction we may assume interWeight [ci] = ω(ST (ei)) − ω(ei). Thus, line
6 of Algorithm 1, where we take the sum over all interWeight values of u’s
children ci, yields

interWeight [u] =
∑

(ωv,t | {v, t} ∈ E \ E(T ) ∧ ∃ci ∈ C(u) :

v ∈ D(ci), t /∈ D(ci))

=
∑

(ωv,t | v ∈ D(ci) for some ci ∈ C(u) ∧ t ∈ D(cj))

for some cj ∈ C(u), cj 6= ci)

+
∑

(ωv,u | {v, u} ∈ E \ E(T ) ∧ v ∈ D(u) \ {u})

+
∑

(ωv,t | {v, t} ∈ E \ E(T ) ∧ v ∈ D(u) \ {u}, t /∈ D(u))

Note that this is an intermediate result of interWeight [u]. The blue and green
terms make up intraWeight [u], which we still have to subtract. Moreover, the
red term does not yet contain the (weights of) edges in T with one end vertex
being u and the other one not being contained in D(u). In the following, we
replace the blue and the green term by intraWeight [u] and rewrite the red
term.
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interWeight [u] = intraWeight [u] +
∑

(ωv,t | {v, t} ∈ E \ E(T )),

v ∈ D(u) \ {u}, t /∈ D(u)

= intraWeight [u] +
∑

(ωv,t | {v, t} ∈ E \ E(T ),

v ∈ D(u), t /∈ D(u)) −∑
(ωu,t | {u, t} ∈ E \ E(T ), t /∈ D(u))

= intraWeight [u] + ω(ST (eT ))− ω(eT )−∑
(ωu,t | {u, t} ∈ E \ E(T ), t /∈ D(u))

Finally, line 15 of Algorithm 1 results in interWeight [u] = intraWeight [u] +
ω(ST (eT ))− ω(eT ), and line 20 of Algorithm 1 yields Eq. 6.5.

B.2 Proof of Proposition 6.3

Proof. All initialization and preprocessing steps can be done in O(n) time. Dur-
ing the postorder traversal of T each v ∈ V explores its direct neighborhood,
either in Leaf or in NonLeaf. Two observations are crucial now. First, all
elementary operations within Leaf and NonLeaf take constant time, includ-
ing the LCA queries. Second, for each edge of G the respective operations are
executed at most twice.

C MCV Postprocessing

We now show how one round of the postprocessing algorithm that optimizes
MCV can be implemented in O(|E|) time. The crucial step is to decide if moving
a vertex v to the opposite block reduces MCV in O(deg(v)) time. To do so,
we need a few notations. An internal vertex is a vertex of the graph which is
not a boundary vertex, and the external degree of a vertex is defined as the
number of neighbors in the opposite block. Let (V1, V2) be a bipartition of G
and, without loss of generality, let v be a random boundary vertex from block
V1. During the course of the algorithm, we keep track of the communication
volumes of the blocks. Let C1 and C2 be the initial communication volume of V1
and V2, respectively. We do the following to decide if moving v to the opposite
block reduces MCV. First, we move v to the opposite block V2. Afterwards, the
communication volume C2 is reduced by the number of boundary vertices in V2
that are also neighbors of v and become internal vertices after the movement.
Moreover, the communication volume C1 is increased by the amount of internal
vertices in V1 that become boundary vertices after v is moved to V2. Additionally,
since we move v, the communication volume C1 is reduced by one, and if the
number of neighbors of v in V1 is not zero, then C2 is increased by one. Note
that we can check in constant time if a vertex is a boundary vertex or an internal
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vertex by storing the external degree of all vertices in an array and updating the
external degree of a vertex and its neighbors when the vertex is moved. We move
v back to its origin if the movement did not yield an improvement in MCV.

D Test Set of Complex Networks

Table D.1. Complex networks used for comparing ex cond and ex alg.

Name #vertices #edges Network Type

p2p-Gnutella 6 405 29 215 filesharing network

PGPgiantcompo 10 680 24 316 largest connected component in network of PGP users

email-EuAll 16 805 60 260 network of connections via email

as-22july06 22 963 48 436 network of autonomous systems in the internet

soc-Slashdot0902 28 550 379 445 news network

loc-brightkite edges 56 739 212 945 location-based friendship network

loc-gowalla edges 196 591 950 327 location-based friendship network

coAuthorsCiteseer 227 320 814 134 citation network

wiki-Talk 232 314 1 458 806 network of user interactions through edits

citationCiteseer 268 495 1 156 647 citation network

coAuthorsDBLP 299 067 977 676 citation network

web-Google 356 648 2 093 324 hyperlink network of web pages

coPapersCiteseer 434 102 16 036 720 citation network

coPapersDBLP 540 486 15 245 729 citation network

as-skitter 554 930 5 797 663 network of internet service providers

E Details of Experimental Results
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Table E.1. Effect of postprocessing on performance of ex alg. Numbers are ratios of
the performance indicators minMCV and avgMCV with and without postprocessing.
A ratio r < 1.0 means that postprocessing reduces MCV by 100(1− r)%.

minMCV avgMCV

PGPgiantcompo 0.951 0.924

as-22july06 0.913 0.824

email-EuAll 0.858 0.859

loc-brightkite edges 0.765 0.753

p2p-Gnutella04 0.866 0.862

soc-Slashdot0902 0.921 0.912

citationCiteseer 0.939 0.919

coAuthorsCiteseer 0.975 0.955

coAuthorsDBLP 0.905 0.898

loc-gowalla edges 0.887 0.870

web-Google 0.965 0.926

wiki-Talk 0.994 0.974

as-skitter 0.939 0.937

coPapersCiteseer 0.892 0.877

coPapersDBLP 0.856 0.841

Geometric mean 0.907 0.887

Table E.2. Performance quotients of ex cond20 with postprocessing for minMCV,
avgMCV and avgTime. Reference is ex alg with postprocessing. A quotient < 1.0
means that ex cond20 yields better results than ex alg.

minMCV avgMCV avgTime

PGPgiantcompo 0.962 1.004 3.068

as-22july06 0.898 0.766 1.387

email-EuAll 0.904 0.918 1.537

loc-brightkite edges 0.714 0.714 1.190

p2p-Gnutella04 1.003 1.000 2.255

soc-Slashdot0902 0.991 0.999 3.045

citationCiteseer 1.001 0.974 1.938

coAuthorsCiteseer 1.090 1.053 2.842

coAuthorsDBLP 0.743 0.774 1.461

loc-gowalla edges 0.608 0.607 0.642

web-Google 0.820 0.729 3.479

wiki-Talk 0.992 1.023 1.142

as-skitter 0.769 0.760 0.924

coPapersCiteseer 1.011 1.260 2.575

coPapersDBLP 1.035 1.135 2.448

Geometric mean 0.892 0.897 1.793
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Table E.3. Performance quotients of ex cond100 with postprocessing for minMCV,
avgMCV and avgTime. Reference is ex alg with postprocessing. A quotient < 1.0
means that ex cond100 yields better results than ex alg.

minMCV avgMCV avgTime

PGPgiantcompo 0.986 0.998 12.379

as-22july06 0.750 0.760 2.373

email-EuAll 0.874 0.917 3.183

loc-brightkite edges 0.715 0.715 3.836

p2p-Gnutella04 0.995 0.995 6.670

soc-Slashdot0902 0.920 0.987 10.801

citationCiteseer 1.017 0.972 7.485

coAuthorsCiteseer 1.068 1.035 10.567

coAuthorsDBLP 0.737 0.776 5.282

loc-gowalla edges 0.624 0.609 1.929

web-Google 0.837 0.729 13.507

wiki-Talk 0.987 1.015 1.194

as-skitter 0.793 0.769 2.986

coPapersCiteseer 0.991 1.245 8.567

coPapersDBLP 0.970 1.118 7.951

Geometric mean 0.874 0.893 5.278

Table E.4. Performance quotients of ex cond200 with postprocessing for minMCV,
avgMCV and avgTime. Reference is ex alg with postprocessing. A quotient < 1.0
means that ex cond200 yields better results than ex alg.

minMCV avgMCV avgTime

PGPgiantcompo 0.976 1.000 24.258

as-22july06 0.694 0.735 3.645

email-EuAll 0.874 0.927 5.262

loc-brightkite edges 0.692 0.711 7.215

p2p-Gnutella04 0.997 0.997 12.313

soc-Slashdot0902 0.913 0.959 20.883

citationCiteseer 1.013 0.974 14.589

coAuthorsCiteseer 1.026 1.035 20.412

coAuthorsDBLP 0.740 0.773 10.157

loc-gowalla edges 0.615 0.611 3.574

web-Google 0.843 0.729 26.421

wiki-Talk 0.986 1.017 1.217

as-skitter 0.775 0.760 5.588

coPapersCiteseer 1.035 1.255 16.131

coPapersDBLP 0.958 1.122 14.881

Geometric mean 0.865 0.890 9.411
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Table E.5. Performance quotients of ex cond100 without postprocessing for minCut,
avgCut and avgTime. Reference is ex alg without postprocessing. A quotient < 1.0
means that ex cond100 yields better results than ex alg.

minMCV avgMCV avgTime

PGPgiantcompo 1.036 1.021 13.405

as-22july06 0.858 0.904 2.387

email-EuAll 0.976 0.894 3.248

loc-brightkite edges 1.026 1.032 3.964

p2p-Gnutella04 0.951 0.959 7.554

soc-Slashdot0902 0.943 1.258 13.083

citationCiteseer 0.986 0.941 8.000

coAuthorsCiteseer 1.118 1.110 11.420

coAuthorsDBLP 0.795 0.885 5.554

loc-gowalla edges 1.100 1.093 1.948

web-Google 0.826 0.699 15.660

wiki-Talk 1.032 1.033 1.194

as-skitter 1.007 1.007 3.085

coPapersCiteseer 1.150 1.391 13.578

coPapersDBLP 1.034 1.252 12.045

Geometric mean 0.984 1.018 5.915
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