Skip to main content

Effect of Initial Conditioning of Reinforcement Learning Agents on Feedback Control Tasks over Continuous State and Action Spaces

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 299))

Abstract

Reinforcement Learning (RL) methods have been proposed as an alternative approach to feedback control problems. These algorithms require little input from the system designer and can adapt their behavior to the dynamics of the system. Nevertheless, one of the issues when tackling with a feedback control task with continuous state and action spaces from scratch is the enormous amount of interaction with the system required for the agent to learn an acceptable policy. In this paper, we measure empirically the performance gain achieved from performing a conditioning training phase with the agents using randomly set PID controllers in two feedback control problems: the speed control of an underwater vehicle, and the pitch control of an airplane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M.S., Tokhi, M.O.: Hybrid fuzzy logic control with genetic optimisation for a single-link flexible manipulator. Engineering Applications of Artificial Intelligence 21(6), 858–873 (2008)

    Article  Google Scholar 

  2. Bellomo, D., Naso, D., Babuska, R.: Adaptive fuzzy control of a non-linear servo-drive: Theory and experimental results. Engineering Applications of Artificial Intelligence 21(6), 846–857 (2008)

    Article  Google Scholar 

  3. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximation. CRC Press (2010)

    Google Scholar 

  4. Douligeris, C., Singh, B.K.: Analysis of neural-network-based congestion control algorithms for atm networks. Engineering Applications of Artificial Intelligence 12(4), 453–470 (1999)

    Article  Google Scholar 

  5. Du, H., Lam, J., Sze, K.Y.: Non-fragile output feedback h vehicle suspension control using genetic algorithm. Engineering Applications of Artificial Intelligence 16, 667–680 (2003)

    Article  Google Scholar 

  6. Fernandez-Gauna, B., Ansoategui, I., Etxeberria-Agiriano, I., Graña, M.: An empirical study of actor-critic methods for feedback controllers of ball-screw drivers. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 441–450. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Fernandez-Gauna, B., Ansoategui, I., Etxeberria-Agiriano, I., Graña, M.: Reinforcement learning of ball screw feed drive controllers. In: Engineering Applications of Artificial Intelligence (2014) (first online)

    Google Scholar 

  8. Hafner, R., Riedmiller, M.: Reinforcement learning in feedback control: Challenges and benchmarks from technical process control. Machine Learning 84(1-2), 137–169 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hasselt, H.: Reinforcement Learning in Continuous State and Action Spaces. In: Reinforcement Learning: State of the art. Adaptation, Learning, and Optimization, pp. 207–251. Springer (2012)

    Google Scholar 

  10. Hui, Y., Yan, Z., Long, W.Z., Chao, Y.: Adaptive double-loop pid control method of dc motor based on the ga-fnc algorithm. In: 2012 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT), pp. 324–329 (July 2012)

    Google Scholar 

  11. Koren, Y., Lo, C.C.: Advanced controllers for feed drives. In: Annals of the CIRP, vol. 41 (1992)

    Google Scholar 

  12. Kundu, S., Kawata, S.: Genetic algorithms for optimal feedback control design. Engineering Applications of Artificial Intelligence 9(4), 403–411 (1996)

    Article  Google Scholar 

  13. Lewis, F.L., Liu, D., et al.: Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley (2013)

    Google Scholar 

  14. Lewis, F.L., Vrabie, D., Vamvoudakis, K.G.: Reinforcement learning and feedback control. IEEE Control Systems Magazine 9, 32–50 (2012)

    Article  MathSciNet  Google Scholar 

  15. Madar, J., Abonyi, J., Szeifert, F.: Feedback linearizing control using hybrid neural networks identified by sensitivity approach. Engineering Applications of Artificial Intelligence 18(3), 343–351 (2005)

    Article  Google Scholar 

  16. Moore, M.L., Musacchio, J.T., Passino, K.M.: Genetic adaptive control for an inverted wedge: experiments and comparative analyses. Engineering Applications of Artificial Intelligence 14(1), 1–14 (2001)

    Article  Google Scholar 

  17. Neumann, G.: The Reinforcement Learning Toolbox, Reinforcement Learning for Optimal Control Tasks. PhD thesis, Technischen Universitaet, Graz (2005)

    Google Scholar 

  18. Bucak, I.O., Zohdy, M.A.: Reinforcement learning control of nonlinear multi-link system. Engineering Applications of Artificial Intelligence 14, 563–575 (2001)

    Article  Google Scholar 

  19. Senthilkumar, K.S., Bharadwaj, K.K.: Hybrid genetic-fuzzy approach to autonomous mobile robot. In: IEEE International Conference on Technologies for Practical Robot Applications, TePRA 2009, pp. 29–34, 9–10 (2009)

    Google Scholar 

  20. Srinivasan, K., Tsao, T.C.: Machine feed drives and their control - a survey of the state of the art. Journal of Manufacturing Science and Engineering 119, 743–748 (1997)

    Article  Google Scholar 

  21. Sutton, R., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

    Google Scholar 

  23. van Hasselt, H., Wiering, M.A.: Reinforcement learning in continuous action spaces. In: Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (2007)

    Google Scholar 

  24. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Journal of Dynamic Systems, Measurements and Control 115, 220–222 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fernandez-Gauna, B., Osa, J.L., Graña, M. (2014). Effect of Initial Conditioning of Reinforcement Learning Agents on Feedback Control Tasks over Continuous State and Action Spaces. In: de la Puerta, J., et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-319-07995-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07995-0_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07994-3

  • Online ISBN: 978-3-319-07995-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics