Reordering Buffer Management with Advice

Anna Adamaszek', Marc P. Renault?, Adi Rosén?, and Rob van Stee***

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany

anna@mpi-inf.mpg.de

2 Université Paris Diderot - Paris 7 and UPMC, France

mrenault@liafa.univ-paris-diderot.fr
3 CNRS and Université Paris Diderot - Paris 7, France
adiro@liafa.univ-paris-diderot.fr
4 University of Leicester, Leicester, United Kingdom

rob.vanstee@Qle.ac.uk

Abstract. In the reordering buffer management problem, a sequence
of colored items arrives at a service station to be processed. Each color
change between two consecutively processed items generates cost. A re-
ordering buffer of capacity k items can be used to preprocess the input
sequence in order to decrease the number of color changes. The goal is
to find a scheduling strategy that, using the reordering buffer, minimizes
the number of color changes in the given sequence of items.

We consider the problem in the setting of online computation with ad-
vice. In this model, the color of an item becomes known only at the
time when the item enters the reordering buffer. Additionally, together
with each item entering the buffer, we get a fixed number of advice bits,
which can be seen as information about the future or as information
about an optimal solution (or an approximation thereof) for the whole
input sequence. We show that for any € > 0 there is a (14 ¢)-competitive
algorithm for the problem which uses only a constant (depending on €)
number of advice bits per input item.

We complement the above result by presenting a lower bound of £2(log k)
bits of advice per request for an optimal deterministic algorithm.

1 Introduction

In the reordering buffer management problem, a sequence of colored items arrives
at a service station for processing. At any time, the service station is configured
to process items of a certain color c¢. Changing the configuration of the service
station, i.e., preparing the station to service items of a different color, generates
cost. The total cost of processing a sequence of items is equal to the number of
color changes in the sequence. In order to reduce the processing cost, the service
station is equipped with a reordering buffer that has capacity to hold k items.
At each point in time, the buffer contains the first &k items of the input sequence

* Supported by the Alexander von Humboldt Foundation.
** Work performed while the author was at the Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany.

that have not yet been processed, and one arbitrary item has to be chosen to
be extracted from the buffer and processed by the service station. If the color
of the chosen item differs from the color of the previously processed item, the
configuration of the service station has to be changed, generating cost. The goal
is to find a scheduling strategy that, using the reordering buffer, preprocesses the
input sequence to minimize the number of color changes. In the online setting,
which is considered in this paper, the color of an item becomes known only at
the time when the item enters the reordering buffer, i.e., we do not know the
whole input sequence in advance.

This framework has many applications in various areas, such as production
engineering, storage systems, network optimization and computer graphics (see
[3,6,14,17,18] for more details). One simple example is a paint shop of a car
manufacturing plant, where switching colors between two consecutively painted
cars generates costs and delays due to the necessary cleaning and set-up. There-
fore, some paint shops are equipped with a reordering buffer to preprocess the
sequence of incoming cars (see [14]).

In this paper, we study the problem in the setting of online computation with
advice [11]. This setting has received much attention in recent years as it relaxes
the traditional online setting of no information about the future, and allows
the online algorithm to get some partial information about future requests or
about the structure of an optimal (or near-optimal) solution. It also allows one
to quantify the amount of information about the future available to the online
algorithm and to study the interplay between the amount of information and the
attainable competitive ratio. Informally (See Section 2 for a formal definition), in
this setting, the online algorithm receives with each request some b bits of advice
which are the value of a function, defined by the algorithm, of the whole input
sequence (including the future). In this manner the online algorithm receives
some information about the future. Note that we view the advice as given by an
oracle, i.e., we do not consider the issue if the advice can be computed efficiently
when knowing the whole input sequence.

Related work. The reordering buffer management problem has been introduced
by Récke et al. [18], and has been extensively studied. In the online setting,
the best known results are a deterministic O(+/log k)-competitive algorithm by
Adamaszek et al. [1], and a randomized O(loglog k)-competitive algorithm by
Avigdor-Elgrabli and Rabani [5]. To complement this, there are (nearly) match-
ing lower bounds of £2(1/logk/loglogk) and f2(loglogk) on the competitive
ratio of any online deterministic and randomized algorithms, respectively [1]. In
the offline setting, i.e., when the whole input sequence is known in advance, the
best known result is a constant factor approximation by Avigdor-Elgrabli and
Rabani [4], while the problem is known to be NP-hard [9, 2].

More general versions of the problem have been studied, where the context
switching cost for switching from an item of color ¢ to an item of color ¢’ depends
on ¢ (e.g., [13,1]), or on both ¢ and ¢’ [12].

The model of online computation with advice considered in the present paper
has been introduced by Emek et al. [11]. In that paper, the authors give tight

bounds of ©(logn/b) on the competitive ratio of deterministic and randomized
online algorithms with advice for metrical task systems, where n is the number
of states of the system and b is the number of advice bits per request. They also
give a deterministic online algorithm with advice for the k-server problem which
is kO(%)—competitive, where ©(1) < b < log k. This has been first improved by

. . log k
Boéckenhauer et al. [7], and subsequently by Renault and Rosén [19] to {%—‘.

Bockenhauer et al. [8] introduced a somewhat similar model for online al-
gorithms with advice, where the advice is a single tape of bits instead of being
given separately for each request. This allows an algorithm to read a different
number of bits of advice per request, but it also requires that the online al-
gorithm knows how many bits of advice to read with each request. Thus, the
two models are, in general, incomparable. Several results have been given in
this related model [10,8,15,16,7]. For example, in [10, 8], the authors explore
the number of bits of advice required for deterministic and randomized paging
algorithms, algorithms for the DiffServ problem, algorithms for a special case of
the job shop scheduling problem, and algorithms for the disjoint path allocation
problem, to be 1-competitive.

Our contribution. We give an online algorithm with advice for the reordering
buffer management problem that, for any € > 0, achieves a competitive ratio of
1+ ¢, using only O(log(1/¢)) advice bits per request. For any input sequence,
we show how to construct the advice, based on an optimal solution for the given
sequence, which allows us to obtain a good competitive ratio. The overview of
the construction is as follows. The advice bits for each element of a color ¢ encode
how the algorithm should handle all “adjacent” elements of color c, i.e., if the
algorithm should keep all elements of color ¢ in the buffer until more items of
color ¢ arrive, output them at once, or output them, but only after a certain
waiting period. The idea is that the order of the colors with the latter property
is not contained in the advice of single elements (as that would require too many
bits of advice), but it is encoded among all advice bits of the elements of the
given color. The key obstacle is that with a small number of advice bits per
item we cannot encode the exact order in which the colors should be output, in
particular when a small number of elements of some color has to wait for a long
time in the buffer. To deal with this problem, we modify the optimal solution
by selecting some elements which will be removed earlier from the buffer. That
frees additional space in the buffer, which allows us to keep some other elements
longer in the buffer, until one more item of their color arrives, after which we can
output these elements immediately. That significantly shortens the list of colors
which have to be output “soon, but not yet”. After this operation, we can encode
the desired position in the list for all but a small fraction of elements (which also
must be removed earlier from the buffer). We upper bound the increase in the
cost, of the generated output sequence by charging the additional color changes
to the color changes of the optimal solution.

We complement the above result by showing that in order for an online algo-
rithm to have optimal performance, the number of bits of advice must depend

on k. More precisely, £2(log k) bits are required. This lower bound applies even
if all the advice bits are given to the algorithm before the sequence starts, and
it matches (up to a constant factor) the trivial upper bound, where the advice
indicates which color switch has to be performed at each step.

2 The Model

We use the definition of deterministic online algorithms with advice as presented
n [11]. An online algorithm is defined as a request-answer game that consists
of a request set R, a sequence of finite nonempty answer sets Aj, Ao, ..., and
a sequence of cost functions cost, : R" x A; x Az x --- x A, — RT U {cc} for
n = 1,2,.... In addition, there is an advice space U of size 2°, where b > 0
is the number of bits of advice provided to the algorithm with each request.
With each request, the online algorithm receives some advice that is defined by
a function, u; : R* — U, where 7 is the request index, that is applied to the whole
request sequence R*, including future requests. A deterministic online algorithm
with advice can, thus, be represented as a sequence of pairs (g;,u;), where g; is
the function defining the action of the online algorithm at step ¢ and is defined
gi : R'xU" — A; fori =1,2,.... The action taken by the online algorithm after
receiving request r; is therefore a function of the first ¢ requests, r1,...,r;, and
the advice received so far, ui(o),...,u; (o).

We use the standard definitions of competitive analysis. We say that an
algorithm is a-competitive if, for every finite request sequence o, |ALG(0)| <
a - |oPT(0)| + ¢, where ¢ is a constant which does not depend on the request
sequence o, |ALG(0)| denotes the cost of the solution generated by ALG for o,
and |oPT(0)] is the cost of an optimal solution for o.

3 Structure of Advice and the Algorithm

The advice for each input element e consists of two parts: the type t. and the
value ve. The type of an element e describes how e, or rather a whole collec-
tion of elements of the same color as e, should be handled by the algorithm
ALG, i.e., if ALG should keep them in the buffer until more elements of the same
color arrive, if ALG should output them at once, or output them, but only af-
ter a certain waiting period. There are four possible types of an element, i.e.,
te € {WAIT, LIST, READY, COMPLETE}. The value v, of an element e is used to
encode an order, according to which some input elements will be output. For
each element e we have v, € {0,...,D — 1}, where D is a constant depending
on ¢ and will be fixed later.

The advice sequence will be constructed based on an optimal solution opPT
for the input sequence.

Time. In this paper, we use the following notion of time. In each time step
1,...,n, one element arrives and is stored in the buffer. In each time step
k,...,k +n — 1, one element is removed from the buffer, after the element
which arrives at that time (if any) has been stored.

Color blocks. The elements which have the same color are partitioned into
color blocks. A complete color block is a maximal set of elements of one color
ending with an element of type COMPLETE, and containing no other elements of
type COMPLETE. The advice sequence will be constructed in such a way that the
types of the consecutive elements from one complete color block always form an
expression

(WAIT)" ((LIST)* U (READY)") COMPLETE,

i.e., first there is an arbitrary number (possibly zero) of elements of type WAIT,
then an arbitrary number of elements of type LIST or an arbitrary number of
type READY, and at the end exactly one element of type COMPLETE.

At a time ¢, a color block is that part of a complete color block which is
contained in the buffer (some elements of the complete color block may have
been already served, and some may not have been read yet). The notion of a
color block here differs from the standard definition of a color block for the
reordering buffer management problem, where it denoted the set of all elements
of one color contained in the buffer, which were then output consecutively from
the buffer. We now can have more than one color block of the same color in the
buffer. The advice sequence will be constructed in such a way, that the algorithm
ALG will always output all elements of each complete color block consecutively.

We define the type tp of a color block B in the following way. If there is an
element of type COMPLETE in B, then the type of B is COMPLETE. If all the
elements of B have type WAIT, B has type WAIT. Otherwise, the type of B is
LIST or READY, depending on whether B contains elements of type LIST or of
type READY.

The values v, of all elements of a color block B together encode a wvalue of
a color block vp € {0,..., DBl —1}. The value of a color block will be encoded
only for color blocks containing elements of type LIST, and it will define the order
in which these color blocks will be output by the algorithm ALG.

Waiting list. The algorithm ALG maintains a waiting list of color blocks of
type LIST. This list contains only (a subset of) those color blocks that have the
property that some elements of their color are read into the buffer of OPT while
OPT is serving it. At the beginning of the algorithm, the waiting list is empty.
Whenever a color block B of type LIST appears (i.e. the first element of type
LIST for some color block is read from the input), it is inserted into the waiting
list. The initial position of the block on the waiting list, i.e., the position where
the block is inserted, is defined by the value vp of the block. Value 0 denotes the
head of the list. Note that when a new color block is inserted into the waiting
list, the position of other blocks on the list can change.

The value vg of each color block is read from the advice of its elements.
However, some short color blocks may not contain sufficiently many elements to
encode their required position vg. We will check for this case and ensure that
such blocks are never stored in the waiting list. Instead, we serve parts of them
immediately and keep only part in the buffer.

The algorithm. Starting at time k, the algorithm ALG chooses a color block
to be output in the following way.

1. If ALG has a complete color block in the buffer, it chooses the oldest of them
(i.e., the block which first became complete is chosen).

2. Otherwise, if ALG has a color block of type READY in the buffer, it chooses
the oldest of them (i.e., the block which first obtained type READY is chosen).

3. Otherwise ALG chooses a color block of type LIST which is at the head of the
waiting list. The color block is then removed from the waiting list.

The algorithm then outputs consecutively all elements of the chosen color block,
one element at each time step. Notice that when ALG starts outputting a color
block, possibly some elements of the block have not yet been read from the input.
When ALG gets such elements from the input sequence, it appends them to the
color block and outputs them without making any color change.

The complete construction of the advice sequence is given in Section 4. In
Section 5 we show that the construction of the advice sequence guarantees that
ALG can always choose a color block to be output (i.e., there is always a block
of type COMPLETE, READY or LIST in the buffer of ALG), and that ALG can
always output all elements of a complete color block without any color change in
between (Theorem 1). That means in particular that the cost of the algorithm
is upper bounded by the number of color blocks in the advice sequence.

4 Constructing the Advice Sequence

Overview. The advice sequence A, (o) is constructed offline, based on an opti-
mal solution OPT for the instance o of the reordering buffer management prob-
lem. The idea of the construction is as follows. We initially assign each input
element e type t. based on the way OPT handles e. Let ¢ be the color of e. If
OPT makes a color change right after outputting e, e is assigned type COMPLETE.
Otherwise, if the whole color block containing e is kept in the buffer of OPT until
the next element of color c¢ is read from the input sequence, e gets type WAIT.
Otherwise, e gets type LIST. This ensures the following invariant.

Invariant 1 For each color block, its elements are output by OPT in a single
block (i.e., without making a color change).

For each color block B which contains elements of type LIST, we want to
assign a value vpg, which is the initial position of the block on the waiting list.
The blocks in the waiting list are ordered according to the order in which they are
output by oPT. For each color block, if the advice included the exact position of
the block in the waiting list based on the output sequence of opt, the algorithm
ALG would output an optimal solution. However, for some short color blocks,
we cannot encode their position on the waiting list. To deal with this problem,
we will modify the advice data so as to decrease the number of blocks which

’wwwwﬂﬁﬁ@ﬂc‘ ’wwwwéﬂﬂ(ﬁc‘

]wwwwc”rrrrc‘]wwwwwrrrrc‘

removed removed
from buffer from list

removed from list

Fig. 1. The procedures Split(B) (on the left) and Postpone(B) (on the right). None of
the resulting blocks remain on the waiting list. The letters w,, 7, c are used to denote
elements of types WAIT, LIST, READY and COMPLETE, respectively. The frames represent
color blocks.

are in the waiting list at any time. This modification increases the number of
color blocks (i.e., the cost of ALG becomes larger than the cost of opPT), and
introduces elements of type READY. Blocks containing elements of type READY
are not inserted into the waiting list. We now give an overview of the procedures
used to modify the advice data.

Procedure Remove(B) Remove the block B from the waiting list. For each block
B’ that was inserted into the waiting list at a time later than B, and at a position
(in the list) behind B, decrease vgs by one.

Procedure Split(B) Run Remove(B). Reassign type COMPLETE to the first ele-
ment of block B which had type LIST, and reassign type READY to the remaining
elements of B which had type LIST assigned (see Figure 1, left). Note that pos-
sibly some of these elements have not been read from the input yet.

The block B has been split into two blocks, both ending with an element
of type COMPLETE. The elements of the first block (called the early block) are
removed from the buffer. The second block is called a late block. This block is
kept in the buffer (but not on the waiting list).

Procedure Postpone(B) Run Remove(B). Reassign type WAIT to the first element
of B which originally had type LIST assigned, and reassign type READY to the
remaining elements of B which had type LIST assigned (see Figure 1, right).
Possibly some of these elements have not been read from the input yet. Blocks
processed in this way are called postponed blocks.

The procedure Split(B) makes ALG evict the elements from the first block
of B (i.e., the early block) earlier than they were evicted by OPT, generating
free space in the buffer of ALG. This allows some blocks to stay in the buffer
until the next element of the block is read from the input, and only then to be
output by ALG. These are the blocks for which we run procedure Postpone(B).
We will specify later which blocks will be treated in this way. A block B that is
removed from the waiting list by these procedures will never be inserted into the
waiting list of ALG. This is the reason we update the values vps of other blocks

on the waiting list when applying procedure Remove(B). We have the following
observation.

Observation 1 The procedures Split(B) and Postpone(B) maintain Invariant 1.

We are now ready to describe the details of the construction of the advice
sequence A, (o). The input elements from the sequence o are processed one by
one, using a buffer of size k (which we call an advice buffer) and a waiting
list. Notice that at this point we are only creating an advice sequence, that is,
assigning type t. and value v, for each input element e, and not creating an
output sequence. In particular, “removing elements from the buffer” does not
mean “appending elements to the output sequence”.

Processing an input element Whenever there is empty space in the buffer,
we read the next element e from the input sequence 0. We proceed as follows.
First, we assign the initial type of the element e as described above, based on
the way OPT handles e. Then, if e is the first element in its block which is of
type LIST, i.e., its color block changes type to LIST, we insert the color block of
e at the appropriate position, based on the optimal output sequence OPT, into
the waiting list. After this operation, if the waiting list has too many blocks of
length similar to the one added, we remove all such blocks from the waiting list by
applying procedure Split(B) to some of the blocks, and procedure Postpone(B)
to the remaining blocks of the given length. We use the following definition.

Definition 1. The class of a block B on the waiting list is |log|B||, where |B|
is the number of items of this block up to and including the first element of type
LIST.

We now give the detailed description of actions performed for a newly read
element e of color c. Here C' is another constant which will depend on ¢.

1. (Type assignment) We assign the element e type t. based on the way OPT

handles e (see Figure 2).

(a) If OPT makes a color change right after outputting e, e is assigned type
COMPLETE.

(b) Else, if e has already been assigned type READY due to some previous
Split or Postpone operation (i.e., before e has been read into the buffer),
it keeps the type READY.

(c) Else, if the whole color block containing e is kept in the buffer of opT
until the next element element of color ¢ is read from the input sequence,
e gets type WAIT.

(d) Else, e gets type LIST.

Note that the type of the element e can be modified later by applying pro-
cedure Split(B) or Postpone(B) to the color block B of e.

2. (Insertion into the waiting list) If e is the first element of its color block of
type LIST, insert the color block B of e into the waiting list at position vpg

| [e]

COMPLETE
Leo] [e]] | Leo] [e]] |
WAIT will enter the buffer LIST will enter the buffer
before OPT serves eg after OPT serves eg

Fig. 2. Possible initial types of elements (excluding the special case of READY). The
type LIST indicates that OPT starts serving this color block before all elements have
been read into the buffer; the remaining elements enter the buffer while the color block
is being served (and while other elements of the color block are being removed).

(derived from the solution OPT). Let ¢ be the class of block B. Count the
number n; of color blocks of class ¢ which are currently in the waiting list.

If n; = C, let By and Bs be the two last color blocks of class ¢ in the waiting
list. Run Split(B;) and Split(Bg). For each other block By of class i on the
waiting list, run Postpone(By). By performing these operations, we ensure
that ALG will never insert these C' blocks into the waiting list.

Note that in step 2 some blocks may be split, with the resulting early blocks
being removed from the buffer.

Whenever the advice buffer becomes full, and there are no elements of the
current color block in the buffer, we choose a new color block B to be processed
(i.e., removed from the buffer), according to the rules of ALG. The following
lemma shows that the rules of ALG can always be successfully applied.

Lemma 1. While creating the advice sequence, if blocks are removed from the
buffer, according to the rules of ALG and Step 2 above, then starting from time
k there is always an element of type different than WAIT in the buffer.

Let B be the color block chosen from the full advice buffer according to the
rules of ALG. If B is not on the waiting list, we simply remove it from the buffer.
If B is on the waiting list, we have to consider two cases.

1. The value v is smaller than DIB! i.e., it can be encoded using |B| values
v of the elements of the block. We set appropriately the values v, and we
remove B from the buffer and from the waiting list. (Note that this time we
do not apply the procedure Remove(B), i.e., we do not modify any values
vps of blocks B’.)

Only blocks processed in this way will ever be inserted by ALG into the

waiting list.

2. The value vg is at least DBl Run Split(B). In this case, only the early block
obtained from B is removed from the buffer.

Notice that, as above, in determining the length of B in Step 1, we count only
the elements up to and including the first element of type LIST. The reason is
that these are the only elements of B that have been inserted into the buffer
before B has to be inserted into the waiting list, i.e., before the value of B has
to be computed.

Note also that the initial value of vp might decrease (due to calls to the
procedure Remove when B is already in the waiting list) before B is processed
by ALG. Specifically, it does not matter if vp was initially too high, as long as it
drops below D!Bl before the block is chosen to be processed.

5 Analysis of ALG

Lemma 1 leaves open the possibility that ALG may be able to serve only part of
a block. This could happen if not all elements of the (complete) block enter the
buffer while ALG is serving its color. In such a case, ALG would have to return to
this color several times, and its cost would be higher than the number of color
blocks given by the advice sequence A.(o). At the beginning of this section, we
will show that this does not happen, and ALG always outputs complete color
blocks. Then, we will bound the competitive ratio of ALG.
First, we present two technical lemmas.

Lemma 2. In the advice sequence Ac(0), types of the consecutive elements from
one complete color block always form an expression

(WAIT)* ((LIST)* U (READY)") COMPLETE.

Lemma 3. Let cq,...,cp be a collection of consecutive elements of color ¢, out-
put by OPT with no color change in between, and let t be the time when OPT
outputs the first element c1 of the collection. If ALG oulputs c¢; at some time
t' > t, and it has not output any c; before time t', it can output all elements
c1,...,co with no color change in between.

We can now consider all types of blocks which ALG starts outputting before
they become complete, and show that OPT cannot keep the elements of such
blocks longer in the buffer. Applying Lemma 3 gives us the following results.

Lemma 4. When the algorithm ALG starts outputting a color block, it can finish
it with no color changes.

Theorem 1. The algorithm ALG always finds a color block to be output, and
outputs only complete color blocks.

In the remaining part of this section, we will bound the competitive ratio
of ALG, if ALG uses the advice sequence A, (o). For this, we will need an upper
bound on the cost of ALG, as well as a lower bound on the cost of OPT. From
the construction of the advice sequence, we know the following.

10

Observation 2 The cost of ALG is upper bounded by the number of color blocks
given by the advice sequence A.(0).

Observation 3 The cost of OPT is lower bounded by the number of color blocks
other than the late blocks given by the advice sequence A (o).

To bound the competitive ratio, it is enough to bound the number of late
color blocks in A. (o), compared to the number of color blocks of other types.
Late blocks can be generated in two ways: while inserting new elements into the
waiting list, and while processing a color block at the head of the waiting list.
We call the sets of late blocks generated during these two operations by LATEj
and LATEp, respectively.

Lemma 5. We have [LATE;| < Z(|POSTPONED| + |[EARLY]), where POSTPONED
and EARLY denote the sets of postponed and early blocks for A.(o).

Lemma 6. We have |LATEp| < 55+ |LISTED|, where LISTED denotes the set of

color blocks which contain elements of type LIST.

Combining the two Lemmas above and setting C' = [2/¢] and D = [C/e]+1
gives us the main theorem of the paper.

Theorem 2. For any € > 0, there is a (1 + €)-competitive algorithm for the
reordering buffer management problem which uses only O(log(1/<)) advice bits
per input item.

6 Optimality Lower Bound

In this section, we show that a deterministic algorithm requires {2(log k) bits of
advice per request in order to be optimal. Throughout this section, we assume
without loss of generality that an algorithm will only perform a color switch
when there are no more items of the current color in the buffer, and the buffer
is either full or contains the last request. Let k be the size of the buffer, and let

g = <Cl, Co... ,Ck,ﬂ'l(l), ck+1,7r1(2),ck+2 . ,Wl(k),CQk,ﬂ'z(l),Trg(Q), ey 7T2(k‘)>,
where m; is a permutation of the colors cq,...,ck, and m is a permutation of
the colors ¢gy1, ..., cor. Note that |o| = 4k.

As long as the buffer of an optimal algorithm remains full, the algorithm
must switch to the color ¢; when the next element waiting to enter the buffer
has color ¢;. In particular, the first k£ consecutive colors output by the algorithm
must be 7w1(1),..., 71 (k). More formally,

Lemma 7. Given o, let S be the sequence of colors w1 (1),...,m1(k). Let C be
the set of all the possible optimal sequences of color switches for o. The k-prefix
of all the sequences in C is S.

Using Lemma 7, we can prove the main theorem of this section.

Theorem 3. At least logk bits of advice per request are required for a determin-
istic algorithm with advice to be optimal.

11

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Adamaszek, A., Czumaj, A., Englert, M., Récke, H.: Almost tight bounds for
reordering buffer management. In: Fortnow, L., Vadhan, S.P. (eds.) STOC. pp.
607-616. ACM (2011)

Asahiro, Y., Kawahara, K., Miyano, E.: Np-hardness of the sorting buffer problem
on the uniform metric. Discrete Applied Mathematics 160(10-11), 1453-1464 (2012)
Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reorder-
ing buffer management. In: Charikar, M. (ed.) SODA. pp. 13-21. STAM (2010)
Avigdor-Elgrabli, N., Rabani, Y.: A constant factor approximation algorithm for
reordering buffer management. In: Khanna, S. (ed.) SODA. pp. 973-984. SIAM
2013

E\vigd)or—Elgrabli7 N., Rabani, Y.: An optimal randomized online algorithm for
reordering buffer management. CoRR abs/1303.3386 (2013)

Blandford, D.K., Blelloch, G.E.: Index compression through document reordering.
In: DCC. pp. 342-351. IEEE Computer Society (2002)

Béckenhauer, H.J., Komm, D., Krélovic, R., Krélovic, R.: On the advice complexity
of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP (1).
Lecture Notes in Computer Science, vol. 6755, pp. 207-218. Springer (2011)
Bockenhauer, H.J., Komm, D., Krélovic, R., Kralovic, R., Mémke, T.: On the ad-
vice complexity of online problems. In: Dong, Y., Du, D.Z., Ibarra, O.H. (eds.)
ISAAC. Lecture Notes in Computer Science, vol. 5878, pp. 331-340. Springer
(2009)

Chan, H.L., Megow, N., Sitters, R., van Stee, R.: A note on sorting buffers offline.
Theor. Comput. Sci. 423, 11-18 (2012)

Dobrev, S., Kralovic, R., Pardubské, D.: How much information about the future
is needed? In: Geffert, V., Karhumaéki, J., Bertoni, A., Preneel, B., Ndvrat, P.,
Bielikovd, M. (eds.) SOFSEM. Lecture Notes in Computer Science, vol. 4910, pp.
247-258. Springer (2008)

Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642-2656 (2011)

Englert, M., Récke, H., Westermann, M.: Reordering buffers for general metric
spaces. Theory of Computing 6(1), 27-46 (2010)

Englert, M., Westermann, M.: Reordering buffer management for non-uniform cost
models. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP. Lecture Notes in Computer Science, vol. 3580, pp. 627-638. Springer (2005)
Gutenschwager, K., Spiekermann, S., Vof, S.: A sequential ordering problem in
automotive paint shops. Internat. J. Production Research 42(9), 1865-1878 (2004)
Hromkovic, J., Kralovic, R., Kralovic, R.: Information complexity of online prob-
lems. In: Hlineny, P., Kucera, A. (eds.) MFCS. Lecture Notes in Computer Science,
vol. 6281, pp. 24-36. Springer (2010)

Komm, D., Krélovic, R.: Advice complexity and barely random algorithms. RATRO
- Theor. Inf. and Applic. 45(2), 249-267 (2011)

Krokowski, J., Réacke, H., Sohler, C., Westermann, M.: Reducing state changes
with a pipeline buffer. In: Girod, B., Magnor, M.A., Seidel, H.P. (eds.) VMV. p.
217. Aka GmbH (2004)

Récke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In:
Mohring, R.H., Raman, R. (eds.) ESA. Lecture Notes in Computer Science, vol.
2461, pp. 820-832. Springer (2002)

Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server prob-
lem. Theory of Computing Systems pp. 1-19 (2012)

12

