
ar
X

iv
:1

40
1.

59
51

v1
 [

cs
.F

L
]

 2
3

Ja
n

20
14

An Efficient Algorithm for the Equation Tree

Automaton via the k-C-Continuations

Ludovic Mignot, Nadia Ouali Sebti and Djelloul Ziadi ⋆

Laboratoire LITIS - EA 4108 Université de Rouen, Avenue de l’Université
76801 Saint-Étienne-du-Rouvray Cedex.

Abstract. Champarnaud and Ziadi, and Khorsi et al. show how to com-
pute the equation automaton of word regular expression E via the k-C-
Continuations. Kuske and Meinecke extend the computation of the equa-
tion automaton to a regular tree expression E over a ranked alphabet Σ
and produce a O(R · |E |2) time and space complexity algorithm, where
R is the maximal rank of a symbol occurring in Σ and |E | is the size of
E. In this paper, we give a full description of the algorithm based on the
acyclic minimization of Revuz. Our algorithm, which is performed in an
O(|Q| · |E |) time and space complexity, where |Q| is the number of states
of the produced automaton, is more efficient than the one obtained by
Kuske and Meinecke.

1 Introduction

Regular expressions, which are finite representatives of potentially infinite lan-
guages, are widely used in various application areas such as XML Schema Lan-
guages [10], logic and verification [14], etc. The concept of word regular expres-
sions has been extended to tree regular expressions. Similarly to word expres-
sions, one can convert them into finite recognizers, the tree automata.

The study of the different ways of conversion of regular expressions into au-
tomata and vice versa is a very active field. There exists a lot of techniques
to transform regular expressions (resp. regular tree expressions) into finite au-
tomata [2,6,7,15] (resp. into finite tree automata [8,9]). As far as tree automata
are concerned, computation algorithms are extensions of word cases. In [9], the
computation of the position tree automaton from a regular tree expression has
been achieved by extending the classical notions of Glushkov functions defined
in [6], leading to the computation of an automaton which number of states is
linear w.r.t. the number of occurrences of symbols but which number of transi-
tions can be exponential. In the same paper, it is proved that this automaton
can be reduced into a quadratic size recognizer.

On the other side, Kuske and Meinecke have extended the notion of word
partial derivatives [1] into tree partial derivatives. They also present how to
compute them extending from words to trees [8] the k-C-Continuation algorithm
by Champarnaud and Ziadi [3]. They obtain an algorithm with O(R · |E | · |E |)

⋆ {ludovic.mignot, nadia.ouali-sebti, djelloul.ziadi}@univ-rouen.fr

http://arxiv.org/abs/1401.5951v1

space and time complexity where R is the maximal rank of a symbol occurring
in the finite ranked alphabet Σ and |E | is the size of the regular expression.

In this paper, we show how to extend a notion of k-C-Continuation in or-
der to compute from a regular tree expression its equation tree automaton with
an O(|E |+ |Q| · |E |) time and space complexity where |Q| is the number of its
states. This constitutes an improvement in comparison with Kuske and Meinecke
algorithm [8]. The paper is organized as follows: Section 2 outlines finite tree au-
tomata over ranked trees, regular tree expressions, and linearized regular tree
expressions which allows the set of positions to be defined. Next, in Section 3 the
notions of derivation and partial derivative of regular expression and set of regu-
lar expressions are introduced. Thus the definitions of equation tree automaton
and k-C-Continuation tree automaton associated with the regular expression E
is obtained. Afterwards, in Section 4 we present our algorithm which builds the
equation tree automaton with an O(|E |+ |Q| · |E |) time and space complexity.
Finally, Section 5 provides a full example of our construction.

2 Preliminaries

Let (Σ, ar) be a ranked alphabet, where Σ is a finite set and ar represents the rank
of Σ which is a mapping from Σ into N. The set of symbols of rank n is denoted
by Σn. The elements of rank 0 are called constants. A tree t over Σ is inductively
defined as follows: t = a, t = f(t1, . . . , tk) where a is any symbol in Σ0, k is any
integer satisfying k ≥ 1, f is any symbol in Σk and t1, . . . , tk are any k trees over
Σ. We denote by TΣ the set of trees overΣ. A tree language is a subset of TΣ . Let
Σ≥1 = Σ\Σ0 denote the set of non-constant symbols of the ranked alphabetΣ. A
Finite Tree Automaton (FTA) [5,8] A is a tuple (Q,Σ,QT , ∆) where Q is a finite
set of states, QT ⊂ Q is the set of final states and ∆ ⊂

⋃

n≥0(Q×Σn×Q
n) is the

set of transition rules. This set is equivalent to the function∆ fromQn×Σn → 2Q

defined by (q, f, q1, . . . , qn) ∈ ∆ ⇔ q ∈ ∆(q1, . . . , qn, f). The domain of this
function can be extended to (2Q)n × Σn → 2Q as follows: ∆(Q1, . . . , Qn, f) =
⋃

(q1,...,qn)∈Q1×···×Qn
∆(q1, . . . , qn, f). Finally, we denote by∆

∗ the function from

TΣ → 2Q defined for any tree in TΣ as follows:

∆∗(t) =

{

∆(a) if t = a, a ∈ Σ0

∆(f,∆∗(t1), . . . , ∆
∗(tn)) if t = f(t1, . . . , tn), f ∈ Σn, t1, . . . , tn ∈ TΣ

A tree is accepted by A if and only if ∆∗(t) ∩QT 6= ∅. The language recognized

by L(A) is the set of trees accepted by A i.e. L(A) = {t ∈ TΣ | ∆∗(t)∩QT 6= ∅}.
A state q ∈ Q is coaccessible if q ∈ QT or if ∃Q′ = {q1, . . . , qn} ⊂ Q, f ∈ Σn,
q′ a coaccessible state in Q such that q ∈ Q′ and q′ ∈ ∆(f, q1, . . . , qn). The
coaccessible part of the automaton A is the tree automatonA′ = (Q′, Σ,∆′, QT

′)
where Q′ = {q ∈ Q | q is coaccessible} and ∆′ = {(q, f, q1, . . . , qn) ∈ ∆ |
{q, q1, . . . , qn} ⊂ Q′}. It is easy to show that L(A) = L(A′).

Let ∼ be an equivalence relation over Q. We denote by [q] the equivalence
class of any state q in Q. The quotient of A w.r.t. ∼ is the tree automaton
A/∼ = (Q/∼, Σ,QT /∼, ∆/∼) where: Q/∼ = {[q] | q ∈ Q}, QT /∼ = {[q] | q ∈
QT }, ∆/∼ = {([q], f, [q1], . . . , [qn]) | (q, f, q1, . . . , qn) ∈ ∆}.

2

For any integer n ≥ 0, for any n languages L1, . . . , Ln ⊂ TΣ , and for any
symbol f ∈ Σn, f(L1, . . . , Ln) is the tree language {f(t1, . . . , tn) | ti ∈ Li}. The
tree substitution of a constant c in Σ by a language L ⊂ TΣ in a tree t ∈ TΣ ,
denoted by t{c ← L}, is the language inductively defined by L if t = c; {d} if
t = d where d ∈ Σ0 \ {c}; f(t1{c← L}, . . . , tn{c← L}) if t = f(t1, . . . , tn) with
f ∈ Σn and t1, . . . , tn any n trees over Σ. Let c be a symbol in Σ0. The c-product
L1 ·cL2 of two languages L1, L2 ⊂ TΣ is defined by L1 ·cL2 =

⋃

t∈L1
{t{c← L2}}.

The iterated c-product is inductively defined for L ⊂ TΣ by: L0c = {c} and
L(n+1)c = Lnc ∪ L ·c Lnc . The c-closure of L is defined by L∗c =

⋃

n≥0 L
nc .

A regular expression over a ranked alphabet Σ is inductively defined by
E ∈ Σ0, E = f(E1, · · · ,En), E = (E1 +E2), E = (E1 ·c E2), E = (E1

∗c), where
c ∈ Σ0, n ∈ N, f ∈ Σn and E1,E2, . . . ,En are any n regular expressions over
Σ. Parenthesis can be omitted when there is no ambiguity. We write E1 = E2 if
E1 and E2 graphically coincide. We denote by RegExp (Σ) the set of all regular
expressions over Σ. Every regular expression E can be seen as a tree over the
ranked alphabet Σ ∪ {+, ·c, ∗c} with c ∈ Σ0 where + and ·c can be seen as a
symbol of rank 2 and ∗c has rank 1. This tree is the syntax-tree TE of E. The
alphabetical width ||E || of E is the number of occurrences of symbols of Σ in E.
The size |E | of E is the size of its syntax tree TE. The language JEK denoted by

E is inductively defined as JcK = {c}, Jf(E1,E2, · · · ,En)K = f(JE1K, . . . , JEnK),
JE1 +E2K = JE1K∪ JE2K, JE1 ·c E2K = JE1K ·c JE2K, JE1

∗cK = JE1K
∗c where n ∈ N,

E1,E2, . . . ,En are any n regular expressions, f ∈ Σn and c ∈ Σ0. It is well known
that a tree language is accepted by some tree automaton if and only if it can be
denoted by a regular expression [5,8]. A regular expression E defined over Σ is
linear if and only if every symbol of Σ≥1 appears at most once in E. Note that
any constant symbol may occur more than once. Let E be a regular expression

over Σ. The linearized regular expression E
E
in E of a regular expression E is

obtained from E by marking differently all symbols of a rank greater than or
equal to 1 (symbols of Σ≥1). The set of marked symbols with symbols of Σ0 is
the ranked alphabet containing symbols called positions. We denote this set by

PosE (E). When there is no ambiguity we denote by F the subexpression F
E
with

F is a subexpression of E. The mapping h is defined from PosE (E) to Σ with
h(PosE (E)m) ⊂ Σm for every m ∈ N. It associates with a marked symbol fj ∈
PosE (E)≥1 the symbol f ∈ Σ≥1 and for a symbol c ∈ Σ0 the symbol h(c) = c.
We can extend the mapping h naturally to RegExp (PosE (E)) → RegExp (Σ)
by h(a) = a, h(E1 +E2) = h(E1)+h(E2), h(E1 ·c E2) = h(E1) ·c h(E2), h(E

∗c

1) =
h(E1)

∗c , h(fj(E1, . . . ,En)) = f(h(E1), . . . , h(En)), with n ∈ N, a ∈ Σ0, f ∈ Σn,
fj ∈ PosE (E)n such that h(fj) = f and E1, . . . ,En any regular expressions over
PosE (E).

Example 1. Let Σ0 = {a, c}, Σ1 = {g, h}, Σ2 = {f} and Σ = Σ0 ∪Σ1 ∪Σ2 be a
ranked alphabet. Let E, F, G be the three following regular expressions over Σ:
F = ((c + a) + (g(c))∗c)∗c , G = f(a, h(c)) and E = F ·c G. The linearized forms

of E and G are: E
E
= ((c + a) + (g1(c))

∗c)∗c ·c f2(a, h3(c)), G
G

= f1(a, h2(c)).

3

The linearized form of G in E is G
E

= f2(a, h3(c)). Notice that PosG (G) =
{a, f1, h2} 6= PosE (G) = {a, f2, h3}.

3 Tree Automata Computations

In this section, we recall how to compute from a regular expression E a tree
automaton that accepts JEK. We first recall the computation of the equation
automaton AE of E, then we define the k-c-continuation automaton CE .

3.1 The Equation Tree Automaton

In [8], Kuske and Meinecke extend the notion of word partial derivatives [1]
to tree partial derivatives in order to compute from a regular expression E a
tree automaton recognizing JEK. Due to the notion of ranked alphabet, partial
derivatives are no longer sets of expressions, but sets of tuples of expressions.

Let N = (E1, . . . ,En) be a tuple of regular expressions, F be some regular
expression and c ∈ Σ0. Then N ·c F is the tuple (E1 ·c F, . . . ,En ·c F). For S a
set of tuples of regular expressions, S ·c F is the set S ·c F = {N ·c F | N ∈ S}.
Finally, SET(N) = {E1, · · · ,Em} and SET(S) =

⋃

N∈S SET(N).

Definition 1 ([8]). Let E be a regular expression over a ranked alphabet Σ and

f be a symbol in Σm with m ≥ 1 an integer. The set f−1(E) of tuples of regular

expressions is defined as follows:

f−1(g(E1, · · · ,En)) =

{

{(E1, · · · ,En)} if f = g
∅ otherwise

f−1(F+G) = f−1(F) ∪ f−1(G)

f−1(F ·c G) =

{

f−1(F) ·c G if c /∈ JFK
f−1(F) ·c G∪f−1(G) otherwise

f−1(F∗c) = f−1(F) ·c F
∗c

The function f−1 is extended to any set S of regular expressions as follows:

f−1(S) =
⋃

E∈S f
−1(E).

The partial derivative of E w.r.t. a word w ∈ Σ∗
≥1, denoted by ∂w(E), is the

set of regular expressions inductively defined by:

∂w(E) =

{

{E} if w = ε
SET(f−1(∂u(E))) if w = uf, f ∈ Σ≥1, u ∈ Σ∗

≥1

The partial derivation is extended to any subset U of Σ∗
≥1 as by ∂U (E) =

⋃

w∈U ∂w(E). Note that ∂uf (E) = ∂f (∂u(E)) =
⋃

F∈∂u(E) ∂f (F).

Definition 2. Let E be a regular expression over a ranked alphabet Σ. The

Equation Automaton of E is the tree automaton AE = (Q,Σ,QT , ∆) defined by

Q = ∂Σ∗
≥1
(E), QT = {E}, and

∆ =

{

{(F, f,G1, . . . ,Gm) | F ∈ Q, f ∈ Σm,m ≥ 1, (G1, . . . ,Gm) ∈ f−1(F)}
∪ {(F, c) | c ∈ (JFK ∩Σ0)}

Theorem 1 ([8]). Let E be a regular expression and AE be the equation tree

automaton associated with E. Then L(AE) = JEK.

4

3.2 The C-Continuation Tree Automaton

In [8], Kuske and Meinecke show how to efficiently compute the equation tree
automaton of a regular expression via an extension of Champarnaud and Ziadi’s
k-C-Continuation [3,4,7]. In this section, we show how to inductively compute
them. The main difference with [8] is that the k-c-continuations are here com-
puted using alternative formulae, and not using the partial derivation. As a
consequence, any symbol that appears in the expression E admits a non-empty
k-c-continuation (e.g. in [8], there is no continuation for g in E = a ·b g(c)).

Definition 3. Let E be linear. Let k and m be two integers such that 1 ≤ k ≤ m.

Let f be in (ΣE ∩ Σm). The k-C-continuation Cfk(E) of f in E is the regular

expression defined by:

Cfk(g(E1, · · · ,Em)) =

{

Ek if f = g
Cfk(Ej) if f ∈ ΣEj

Cfk(F+G) =

{

Cfk(F) if f ∈ ΣF

Cfk(G) if f ∈ ΣG

Cfk(F ·c G) =

{

Cfk(F) ·c G if f ∈ ΣF

Cfk(G) otherwise

Cfk(F∗c) = Cfk(F) ·c F
∗c

By convention, we set Cε1(E) = E.

Let us first show the relation between partial derivation and k-c-continuation.

Lemma 1. Let E be linear, n, m and k be three integers such that n,m ≥ 1,
1 ≤ k ≤ m, f ∈ Σn and g ∈ Σm ∪ {ε}. If f−1(Cgk (E)) 6= ∅ then f−1(Cgk (E)) =
{(Cf1(E), . . . , Cfn(E))}.

Proof. By induction over the structure of E. For any symbol g ∈ Σp ∪ {ε} and
for any expression F, let us set Cg(F) = (Cg1 (F), . . . , Cgp(F)).

1. Let us suppose that E = h(E1, · · · ,Em). Three cases have to be considered:
(a) If g = ε, then k = 1 and f−1(Cgk(E)) = f−1(E). Since f−1(Cgk(E)) 6= ∅,

f = h. Hence, f−1(E) = {(E1, . . . ,En)}. Moreover, for any integer 1 ≤
j ≤ n, Cfj (E) = Ej . Consequently, f

−1(Cgk (E)) = {Cf (E)}.
(b) Let us suppose that g 6= ε and g 6= h. Hence Cgk(E) = Cgk(El) with f ∈

ΣEl
. By induction hypothesis, f−1(Cgk (Ej)) = {Cf (El)}. Moreover, for

any integer 1 ≤ j ≤ n, Cfj (E) = Cfj (El). Consequently, f
−1(Cgk (E)) =

{Cf (E)}.
(c) Let us suppose that g 6= ε and g = h. Hence Cgk (E) = Ek. Since

f−1(Cgk (E)) 6= ∅, then f ∈ ΣEk
. Thus, f 6= h. By definition, Ek =

C1
ε (Ek). By induction hypothesis, f−1(C1

ε (Ek)) = {Cf (Ek)}. Since f 6= h
and since f ∈ ΣEk

, for any integer 1 ≤ j ≤ n, Cfj (E) = Cfj (Ek). Con-
sequently, f−1(Cgk (E)) = {Cf (E)}.

2. Suppose that E = E1 + E2. Suppose that f ∈ ΣE1
. Then f−1(Cgk(E)) =

f−1(Cgk(E1)). By induction hypothesis, f−1(Cgk(E1)) = {Cf (E1)}. Finally,
since for any integer 1 ≤ j ≤ n, Cfj (E) = Cfj (E1), it holds f

−1(Cgk(E)) =
{Cf (E)}. The prove is identical whenever f ∈ ΣE2

.

5

3. Let us suppose that E = E1 ·c E2. Two cases have to be considered:
(a) If g ∈ ΣE1

, f−1(Cgk(E)) = f−1(Cgk(E1) ·c E2). If f ∈ ΣE1
, then

f−1(Cgk (E1)·cE2) = f−1(Cgk(E1))·cE2; otherwise, f
−1(Cgk (E1)·cE2) =

f−1(E2). Hence, according to induction hypothesis, either f−1(Cgk (E1)·c
E2) = {(Cf1(E1) ·c E2, . . . , Cfn(E)) ·c E2}, or f−1(Cgk(E1) ·c E2) =
{(Cf1(E2), . . . , Cfn(E2))}. By definition, considering whether f ∈ ΣE1

,
for any integer 1 ≤ j ≤ n, either Cfj (E) = Cf1(E1) ·c E2 or Cfj (E) =
Cf1(E2). In both of these cases, f−1(Cgk (E)) = {Cf (E)}.

(b) If g ∈ ΣE2
, f−1(Cgk (E)) = f−1(Cgk (E2). By induction hypothesis,

f−1(Cgk (E2) = {(Cf1(E2), . . . , Cfn(E2))}. Moreover, for any integer 1 ≤
j ≤ n, Cfj (E) = Cfj (E2). Consequently, f

−1(Cgk(E)) = {Cf (E)}.
4. Let us suppose that E = E∗c

1 . Two cases have to be considered:
(a) If g = ε, then f−1(Cgk(E)) = f−1(E∗c

1) = f−1(E1) ·c E
∗c

1 . By defini-
tion, E1 = Cε(E1). Hence by induction hypothesis, f−1(Cε(E1)) ·c E

∗c

1 =
{(Cf1(E1)·cE

∗c

1 , . . . , Cfn(E1)·cE
∗c

1 }. Moreover, for any integer 1 ≤ j ≤ n,
Cfj (E) = Cfj (E1) ·c E

∗c

1 . Consequently, f−1(Cgk (E)) = {Cf (E)}.
(b) Suppose that g 6= ε. Then f−1(Cgk(E)) = f−1(Cgk(E1) ·c E∗c

1). De-
pending whether c belongs to JCgk (E1)K, either f

−1(Cgk(E1) ·c E
∗c

1) =
f−1(Cgk (E1))·cE

∗c

1 or f−1(Cgk (E1)·cE
∗c

1) = f−1(Cgk(E1))·cE
∗c

1 ∪f
−1(E∗c

1).
Since E∗c

1 = C1
ε (E

∗c

1), it holds by induction hypothesis that either f−1(Cgk(E1)·c
E∗c

1) = {(Cf1(E1) ·c E
∗c

1 , . . . , Cfn(E1) ·c E
∗c

1)} or f−1(Cgk(E1) ·c E
∗c

1) =
{(Cf1(E1) ·c E

∗c

1 , . . . , Cfn(E1) ·c E
∗c

1)}∪{Cf (E
∗c

1)}. Finally, since for any
integer 1 ≤ j ≤ n, Cfj (E) = Cfj (E1) ·c E

∗c

1 , in both of these cases,
f−1(Cgk (E)) = {Cf (E)}.

⊓⊔

Proposition 1. Let E be linear and f ∈ Σn with n ≥ 1. Let u be a word in

Σ≥1
∗. If f−1(∂u(E)) 6= ∅ then f−1(∂u(E)) = {(Cf1(E), . . . , Cfn(E))}.

Proof. By recurrence over the length of u. For any symbol g ∈ Σp ∪ {ε} and for
any expression F, let us set Cg(F) = (Cg1 (F), . . . , Cgp(F)).

1. Let u = ε. Then f−1(∂u(E)) = f−1(E). By definition, f−1(E) = f−1(C1
ε (E)).

According to Lemma 1, f−1(C1
ε (E)) = {Cf (E)}.

2. Let u = wg with w a word inΣ≥1
∗ and g a symbol inΣm. Then f−1(∂u(E)) =

f−1(SET (g−1(∂u(E)))). According to recurrence hypothesis, it holds that
SET (g−1(∂u(E))) = SET ({Cg(E)}) = {Cg1(E), . . . , Cgm(E)}. By defini-
tion, f−1({Cg1(E), . . . , Cgm(E)} =

⋃

1≤i≤m f−1(Cgi (E)). According to Lem-

ma 1, for any integer i such that f−1(Cgi(E)) 6= ∅, it holds f−1(Cgi (E)) =
{(Cf1(E), . . . , Cfn(E))}. Since f−1(∂u(E)) 6= ∅, there exists at least one in-
teger i such that f−1(Cgi(E)) 6= ∅. Consequently,

⋃

1≤i≤m f−1(Cgi(E)) =
{Cf (E)}.

⊓⊔

Definition 4. The automaton CE = (QC ,PosE (E), {Cε1(E)}, ∆C) is defined by

– QC = {Cfk
j
(E) | fj ∈ PosE (E)m, 1 ≤ k ≤ m} ∪ {Cε1(E)},

6

– ∆C =

{

{(Cx(E), gi,Cgi) | gi ∈ PosE (E)m,m ≥ 1,Cgi ∈ gi
−1(Cx(E))}

∪{(Cx(E), c) |, c ∈ JCx(E)K ∩Σ0}

where for any symbol gi in PosE (E)m, Cgi = (Cg1
i
(E), . . . , Cgm

i
(E)).

The following lemma illustrates the link between CE and AE.

Lemma 2. The coaccessible part of CE is equal to AE.

Proof. The expression E is the final state of the two automata. Let us suppose
now that q is a coaccessible state both in CE and AE. Hence, from Definition 4
and from Definition 2:

there exists a transition (q, f, q1, . . . , qn) in AE

⇔ (q1, . . . , qn) ∈ f−1(q)
⇔ (q1, . . . , qn) = (C1

f (E), . . . , Cn
f (E)) ∈ f−1(q) (Proposition 1)

⇔ there exists a transition (q, f, q1, . . . , qn) in CE.

Hence, the states q1, . . . , qn are coaccessible from q by f in CE if and only if
they are in AE. Consequently, the coaccessible part of CE is equal to the equation
tree automaton AE. ⊓⊔

Corollary 1. The automaton CE accepts JEK.

The C-Continuation tree automaton CE associated with E is obtained by
replacing each transition (Cx(E), gi, Cg1

i
(E), . . . , Cgm

i
(E)) of the tree automaton

CE by (Cx(E), h(gi), Cg1
i
(E), . . . , Cgm

i
(E)).

Corollary 2. h(L(CE)) = L(CE) = JEK.

In what follows, for any two trees s and t, we denote by s 4 t the relation
”s is a subtree of t”. Let k be an integer. We denote by root(s) the root of any
tree s and by k-child(t), for a tree t = f(t1, . . . , tn), the k

th child of f in t that
is root of tk if it exists.

Let 1 ≤ k ≤ m be two integers and fj be a symbol in PosE (E)m. The sets
First(E) is the subset of PosE (E) defined by First(E) = {root(t) ∈ PosE (E) | t ∈
JEK}. The set Follow(E, fj , k) is the subset of PosE (E) defined by Follow(E, fj , k) =
{gi ∈ PosE (E) | ∃t ∈ JEK, ∃s 4 t, root(s) = fj , k-child(s) = gi}.

Proposition 2 ([9]). The computation of all the sets (Follow(E, fj , k))1≤k≤m,f∈PosE (E)m
can be done with an O(|E |) time and space complexity.

Proposition 3. Let 1 ≤ k ≤ m be two integers and fj be a position in PosE (E)m.

If Follow(E, fj , k) 6= ∅ then Follow(E, fj , k) = First(Cfk
j
(E)).

Proof. Let E be a linear regular expression over a ranked alphabet Σ, 1 ≤ k ≤ m
be two integers and f be a symbol in Σm. The set λf (E, k) is the subset of Σ0

defined by λf (E, k) = {c ∈ Σ0 | ∃t ∈ JEK, ∃f(t1, . . . , tm) 4 t, tk = c}. The set
λ(E) is the subset of Σ0 defined by λ(E) =

⋃

g∈Σm,1≤k≤m λg(E, k).
Let E be a regular expression over a ranked alphabet Σ, 1 ≤ k ≤ m be two

integers and fj be a symbol in PosE (E)m. In [9], it is shown, using alternative

7

and equivalent formulae, that the set Follow(E, fj, k) is equal to Follow(E, fj , k),
where Follow(F, fj , k) is the subset of PosE (E) inductively defined for any linear
regular expression F as follows:

Follow(a, f, k) = ∅,

Follow(E1 +E2, f, k) =

{

Follow(E1, f, k) if f ∈ ΣE1
,

Follow(E2, f, k) if f ∈ ΣE2
,

Follow(E1 ·c E2, f, k) =















(Follow(E1, f, k) \ {c}) ∪ First(E2) if c ∈ λf (E1, k),
Follow(E1, f, k) if f ∈ ΣE1

∧ c /∈ λf (E1, k),
Follow(E2, f, k) if f ∈ ΣE2

∧ c ∈ λ(E1),
∅ otherwise,

Follow(E∗c

1 , f, k) =

{

Follow(E1, f, k) ∪ First(E1) if c ∈ λ(E1),
Follow(E1, f, k) otherwise,

Follow(g(E1, . . . ,En), f, k) =

{

First(Ek) if f = g,
Follow(El, f, k) if f ∈ ΣEl

.

Since by definition Follow(E, fj , k) = Follow(E, fj , k), let us show by induc-
tion over E that if Follow(E, fj, k) 6= ∅ then Follow(E, fj, k) = First(Cfk

j
(E)).

Let us set E = F .
Suppose that F = fj(F1, . . . , Fm). Hence Follow(F, fj , k) = First(Fk). More-

over by definition Cfk
j
(F) = Fk. Then Follow(F, fj , k) = First(Cfk

j
(F)). The

property is true for the base case.
Assuming that the property holds for the subexpressions of F .

1. Consider that F = gi(F1, . . . , Fm) with fj 6= gi. Then by definition Follow(F, fj , k) =
Follow(Fl, fj, k) with fj ∈ ΣFl

. By induction hypothesis, Follow(Fl, fj, k) =
First(Cfk

j
(Fl)). Moreover, from Definition 3, Cfk

j
(F) = Cfk

j
(Fl). Conse-

quently, Follow(F, fj , k) = First(Cfk
j
(F)).

2. Let us consider that F = F1 + F2. Suppose that fj ∈ ΣFi
with i ∈ {1, 2}.

Hence Follow(F1 + F2, fj , k) = Follow(Fi, fj, k). By induction hypothesis,
Follow(Fi, fj, k) = First(Cfk

j
(Fi)). From Definition 3, Cfk

j
(F1+F2) = Cfk

j
(Ei).

Consequently, Follow(F1 + F2, fj , k) = First(Cfk
j
(F1 + F2)).

3. Consider that F = F1 ·c F2. Three cases may occur.

(a) Suppose that c ∈ λfj (F1, k). Then Follow(F1·cF2, fj , k) = (Follow(F1, fj , k)\
{c})∪First(F2). By induction hypothesis, Follow(F1·cF2, fj, k) = (First(Cfk

j
(F1))\

{c}) ∪ First(F2). Moreover, from Definition 3, Cfk
j
(F) = Cfk

j
(F1) ·c F2.

Since c ∈ λfj (F1, k), then by definition of λfj (F1, k), c ∈ Follow(F1, fj, k).
By induction hypothesis, Follow(F1, fj, k) = First(Cfk

j
(F1)) and then c ∈

JCfk
j
(F1)K. Consequently, by definition, First(Cfk

j
(F1)·cF2) = (First(Cfk

j
(F1))\

{c})∪First(F2). Therefore, Follow(F1 ·cF2, fj , k) = First(Cfk
j
(F1 ·c F2)).

(b) Consider that c /∈ λfj (F1, k) and fj ∈ ΣF1
. In this case Follow(F1 ·c

F2, fj, k) = Follow(F1, fj , k). By induction hypothesis, Follow(F1, fj , k) =
First(Cfk

j
(F1)). From Definition 3, Cfk

j
(F1 ·c F2) = Cfk

j
(F1) ·c F2. Since

c /∈ λfj (F1, k), then by definition c /∈ Follow(F1, fj , k). By induction
hypothesis, Follow(F1, fj , k) = First(Cfk

j
(F1)) and then c /∈ JCfk

j
(F1)K.

8

Consequently, First(Cfk
j
(F1 ·c F2)) = First(Cfk

j
(F1)). Then Follow(F1 ·c

F2, fj, k) = First(Cfk
j
(F1 ·c F2)).

(c) Consider that c ∈ λ(F1) and fj ∈ ΣF2
. In this case Follow(F1·cF2, fj , k) =

Follow(F2, fj , k). By induction hypothesis, Follow(F2, fj , k) = First(Cfk
j
(F2)).

From Definition 3, Cfk
j
(F1 ·c F2) = Cfk

j
(F2). Therefore, Follow(F1 ·c

F2, fj, k) = First(Cfk
j
(F1 ·c F2)).

4. Consider that F = F1
∗c . By Definition 3, Cfk

j
(F ∗c

1) = Cfk
j
(F1) ·c F1. Two

cases may occur.
(a) Suppose that c ∈ λ(F1). In this case, Follow(F1

∗c , fj , k) = Follow(F1, fj, k)∪
First(F1

∗c). By induction hypothesis, Follow(F1, fj , k) = First(Cfk
j
(F1)).

By definition, c ∈ Follow(F1, fj, k). Since by induction Follow(F1, fj , k) =
First(Cfk

j
(F1)), c ∈ First(Cfk

j
(F1)) and then c ∈ JCfk

j
(F1)K. Conse-

quently, First(Cfk
j
(F1) ·c F1) = First(Cfk

j
(F1))∪First(F1). Consequently

Follow(F1
∗c , fj, k) = Follow(F1, fj , k) ∪ First(F1

∗c) = First(Cfk
j
(F1)) ∪

First(F1) = First(Cfk
j
(F ∗c

1)).

(b) Suppose that c /∈ λ(F1). In this case, Follow(F1
∗c , fj , k) = Follow(F1, fj, k).

By induction hypothesis, Follow(F1, fj, k) = First(Cfk
j
(F1)). By def-

inition, c /∈ Follow(F1, fj, k). Since by induction Follow(F1, fj , k) =
First(Cfk

j
(F1)), c /∈ First(Cfk

j
(F1)) and then c /∈ JCfk

j
(F1)K. Conse-

quently, First(Cfk
j
(F1)·cF1) = First(Cfk

j
(F1)). Consequently Follow(F1

∗c , fj, k) =

Follow(F1, fj , k) = First(Cfk
j
(F1)) = First(Cfk

j
(F ∗c

1)).
⊓⊔

Proposition 4. Let 1 ≤ k ≤ m be two integers, fj be a symbol in PosE (E)m
and gi be a symbol in PosE (E). Then g−1

i (Cfk
j
(E)) 6= ∅ ⇔ gi ∈ First(Cfk

j
(E)).

Proof. Let F be a linear expression. Let us show by induction over the structure
of F that g−1

i (F) 6= ∅ ⇔ gi ∈ First(F).

1. Consider that F = gi(F1, . . . , Fn). By definition, First(F) = {gi}. By defini-
tion, g−1

i (F) = {(F1, . . . , Fn)}. Hence the two conditions are both satisfied.
2. Consider that F = f(F1, . . . , Fn) with f ∈ ΣF \{gi}. By definition, First(F) =
{f}. By definition, g−1

i (F) = ∅. Hence the two conditions are both unsatis-
fied.

3. If F = F1 + F2, then according to [9], First(F) = First(F1) ∪ First(F2).
By definition, g−1

i (F) = g−1
i (F1) ∪ g

−1
i (F2). By induction hypothesis, for

l ∈ {1, 2}, g−1
i (Fl) 6= ∅ ⇔ gi ∈ First(Fl). Consequently, g

−1
i (F) 6= ∅ ⇔

gi ∈ First(F1) ∨ gi ∈ First(F2)⇔ gi ∈ First(F1) ∪ First(F2).
4. If F = F1 ·c F2, then according to [9], First(F) = First(F1) ∪ (First(F2) |
c ∈ c ∈ JF1K). By definition, g−1

i (F) = g−1
i (F1) ·c F2 ∪ (g−1

i (F2) | c ∈ JF1K).
By induction hypothesis, for l ∈ {1, 2}, g−1

i (Fl) 6= ∅ ⇔ gi ∈ First(Fl).
Consequently, g−1

i (F) 6= ∅ ⇔ gi ∈ First(F).
5. If F = F ∗c

1 , then according to [9], First(F) = First(F1). By definition,
g−1
i (F) = g−1

i (F1) ·c F
∗c

1 . By induction hypothesis, g−1
i (F1) 6= ∅ ⇔ gi ∈

First(F1). Consequently, g
−1
i (F) 6= ∅ ⇔ gi ∈ First(F).

9

As a direct consequence, the conditions of Proposition 4 are equivalent. ⊓⊔

Lemma 3. Let 1 ≤ k ≤ m be two integers and fj be a position in PosE (E)m.

If Follow(E, fj , k) = ∅ then Cfk
j
(E) is not a coaccessible state in CE.

Proof. Let us first show that for any state q = Cfk
j
(E), there exists a tree t such

that q ∈ ∆∗(t), where ∆ is the transition function of CE (proposition P in the
following). By definition, JqK is not empty. If there exists a constant c ∈ JqK, then
by construction q ∈ ∆∗(c). If t = gi(t1, . . . , tn) ∈ JqK, then by definition gi ∈
First(q). According to Proposition 4, g−1

i (Cfk
j
(E)) 6= ∅. Furthermore, according

to Lemma 1, g−1
i (Cfk

j
(E)) = {(Cg1

i
(E), . . . , Cgn

i
(E))}. Hence, the states q1 =

Cg1
i
(E), . . ., qn = Cgn

i
(E) are coaccessible from q. By induction hypothesis,

there exists a tree t′l in JqlK such that ql ∈ ∆∗(t′l). As a direct consequence,
q ∈ ∆∗(gi(t

′
1, . . . , t

′
n)).

Let us show that if q is coaccessible, then there exists a tree t in L(CE)
for any tree s satisfying q ∈ ∆∗(s) such that s 4 t (proposition P’ in the
following). If q = C1

ε (E), any tree s such that s ∈ ∆∗(t) is accepted since q is
final. Setting t = s, property holds. Otherwise, q is coaccessible from a state p.
By construction, there exists a transition (p, fj , (q1, . . . , qm)) with qk = q. By
induction hypothesis, there exists a tree t in L(CE) for any tree s′ satisfying
p ∈ ∆∗(s′) such that s′ 4 t. Since any tree s satisfying q ∈ ∆∗(s), is a subtree
of a tree s′ satisfying p ∈ ∆∗(s′) which root is fj, there exists a tree t in L(CE)
for any tree s satisfying q ∈ ∆∗(s) such that s 4 t.

Suppose that q = Cfk
j
(E) is a coaccessible state in CE. According to (P’),

there exists a tree t in L(CE) for any tree s satisfying q ∈ ∆∗(s) such that s 4 t.
By construction, since Cfk

j
(E) is coaccessible by the symbol fj , there exists a

tree s′ 4 t such that root(s′) = fj and k− child(s′) = root(s). By definition
root(s) ∈ Follow(E, fj , k). As a direct consequence, if Cfk

j
(E) is a coaccessible

state in CE, it is in CE. As previously shown, this implies that Follow(E, fj , k) 6= ∅.
As a conclusion, by definition, Follow(E, fj , k) = Follow(E, fj , k) 6= ∅. ⊓⊔

3.3 From k-C-Continuation Automaton to Equation Automaton

The equation automaton is a quotient of the C-Continuation one w.r.t. the equiv-
alence relation denoted by ∼e over the set of states of CE defined for any two
states q1 = Cfk

j
(E) and q2 = Cgp

i
(E) by q1 ∼e q2 ⇔ h(q1) = h(q2).

Proposition 5. The coaccessible part of the finite tree automaton CE�∼e
is

isomorphic to the equation tree automaton AE.

Proof. Let E be a regular expression over an alphabet Σ. We define the inverse
function of h denoted by h−1 : Σ → 2PosE (E) such that for any symbol x in Σ,
h−1(x) = {y ∈ PosE (E) | h(y) = x}.

Theorem 2 ([8]). Let E be a regular expression over an alphabet Σ. Then for

every u ∈ Σ∗
≥1, ∂u(E) =

⋃

u∈h−1(u) h(∂u(E)).

10

Proposition 6 ([8]). Let E be a regular expression over a ranked alphabet Σ.

Then we have for every f ∈ Σ≥1,

f−1(E) =
⋃

fj∈h−1(f) h(fj
−1(E)) and ∂f (E) =

⋃

fj∈h−1(f)

h(∂fj (E))

Let us denote by C the coaccessible part of the finite tree automaton CE�∼e
.

Let Q be the set of states of AE and Q′ be the set of states of C. The
isomorphism of the sets of states can be shown by the function φ : Q′ → Q :
[Cfk

j
(E)] 7→ h(Cfk

j
(E)). Indeed, according to Lemma 2, Cfk

j
(E) ∈ ∂u(E) for some

u ∈ PosE (E)
∗
≥1. Using Theorem 2, h(Cfk

j
(E)) = h(∂u(E)) ∈ ∂Σ∗

≥1
(E) = Q.

Injectivity of φ can be shown directly from the definition of the equivalence
relation ∼e. For surjectivity, it is deduced from the Theorem 2.

By definition, φ([Cε1 (E)]) = Cε1(E) = E. Hence the image of the final state
of C is the final state of AE.

Let us show that the sets of transitions are also isomorphic.
Let ([Cfjk(E)], g, [Cg1

i
(E)] . . . , [Cgm

i
(E)]) be a transition in C. Equivalently by

construction, there exists a symbol gi such that (Cfjk(E), gi, Cg1
i
(E) . . . , Cgm

i
(E))

is a transition in the accessible part of the automaton CE. As the coaccessible part
of CE and AE are equal (by Lemma 2), the transition (F, gi,H1, . . . ,Hm) is in the
automaton AE with F = Cfjk(E) and Hl = Cgl

i
(E) for 1 ≤ l ≤ m; consequently

(H1, . . . ,Hm) ∈ gi−1(F). From Proposition 6, it is equivalent to (H1 . . . ,Hm) ∈
g−1(F). Thus (F, g,H1 . . . ,Hm) = (h(Cfjk(E)), g, h(Cg1

i
(E)), . . . , h(Cgm

i
(E))) is

a transition in the automaton AE.
Since only equivalences are stated, ([Cfjk(E)], g, [Cg1

i
(E)] . . . , [Cgm

i
(E)]) is a

transition in C if and only if (φ([Cfj k(E)]), g, φ([Cg1
i
(E)]), . . . , φ([Cgm

i
(E)])) is a

transition in AE.
Finally, for c ∈ Σ0, ([Cfjk(E)], c) is a transition in C if and only if c ∈

Jh(Cfjk(E))K. Furthermore, it holds by construction that (φ([Cfj k(E)]), c) is a
transition in AE if and only if c ∈ Jφ([Cfj k(E)])K. Consequently, ([Cfjk(E)], c) is
a transition in C if and only if (φ([Cfj k(E)]), c) is a transition in AE.

As a conclusion, φ is an isomorphism between C and AE. ⊓⊔

4 Construction of the equation tree automaton AE

In [8], the computation of the k-C-Continuations requires a preprocessing step
which is the identification of subexpression of E in O(|E |2) time and space
complexity. We propose an algorithm for the computation of the set of states
with an O(|E |) time and space complexity.

4.1 Computation of the set of states Q
C
�∼e

The main idea is to efficiently compute the quotient CE�∼e
by converting the

syntax tree into a finite acyclic deterministic word automaton.
Let TE be the syntax tree associated with E. The set of nodes of TE is written

as Nodes(E). For a node ν in Nodes(E), sym(ν), father(ν), son(ν), right(ν) and

11

left(ν) denote respectively the symbol, the father, the son, the right son and
the left son of the node ν if they exist. We denote by Eν the subexpression
rooted at ν; In this case we write νE to denote the node associated to Eν . Let
γ : Nodes(E) ∪ {⊥} → Nodes(E) ∪ {⊥} be the function defined by:

γ(ν) =







father(ν) if sym(father(ν)) =∗c and ν 6= νE
right(father(ν)) if sym(father(ν)) = ·c
⊥ otherwise

where ⊥ is an artificial node such that γ(⊥) = ⊥. The ZPC-Structure is the
syntax tree equipped with γ(ν) links. We extend the relation 4 to the set of
nodes of TE: For two nodes µ and ν we write ν 4 µ⇔ TEν

4 TEµ
. We define the

set Γν(E) = {µ ∈ Nodes(E) | ν 4 µ ∧ γ(µ) 6= ⊥} which is totally ordered by 4.

Proposition 7. Let E be linear, 1 ≤ k ≤ n be two integers and f be in ΣE∩Σn.

Then Cfk(E) = ((((Eν0 ·op(ν1) Eγ(ν1)) ·op(ν2)Eγ(ν2)) · · · ·op(νm)Eγ(νm)) where νf is

the node of TE labelled by f , ν0 is the k-child(νf), Γνf (E) = {ν1, . . . , νm} and

for 1 ≤ i ≤ m, op(νi) = c such that sym(father(νi)) ∈ {·c, ∗c}.

Proof. By induction over the structure of E.

1. Let us suppose that E = f(E1, . . . ,En). Then Cfk(E) = Ek. Since by defi-
nition νf is the root of TE , k-child(νf) is the root of Ek. Hence Eν0 = Ek =
Cfk(E).

2. Let us suppose that E = g(E1, . . . ,Em) with g 6= f , or E = E1+E2, or E =
E1 ·c E2 with f ∈ ΣE2

. Then Cfk(E) = Cfk(Ej) with f ∈ ΣEj
. By induction

hypothesis, Cfk(Ej) = ((((Eν0 ·op(ν1) Eγ(ν1)) ·op(ν2) Eγ(ν2)) · · · ·op(νm) Eγ(νm))
where νf is the node of TEj

labelled by f , ν0 is the k-child(νf), Γνf (Ej) =
{ν1, . . . , νm} and for 1 ≤ i ≤ m, op(νi) = c such that sym(father(νi)) ∈
{·c, ∗c}. Since TEj

4 TE , Cfk(Ej) = ((((Eν0 ·op(ν1) Eγ(ν1))·op(ν2)Eγ(ν2)) · · ··op(νm)

Eγ(νm)) where νf is the node of TE labelled by f , ν0 is the k-child(νf),
Γνf (Ej) = {ν1, . . . , νm} and for 1 ≤ i ≤ m, op(νi) = c such that sym(father(νi)) ∈
{·c, ∗c}.

3. Let us suppose that E = E1 ·c E2 with f ∈ ΣE1
(resp. E = E∗c

1). Then
Cfk(E) = Cfk(E1) ·c G with G ∈ {E∗c

1 , E2}. By induction hypothesis,
Cfk(E1) = ((((Eν0 ·op(ν1) Eγ(ν1)) ·op(ν2) Eγ(ν2)) · · · ·op(νm) Eγ(νm)) where νf is
the node of TE1

labelled by f , ν0 is the k-child(νf), Γνf (Ej) = {ν1, . . . , νm}
and for 1 ≤ i ≤ m, op(νi) = c such that sym(father(νi)) ∈ {·c, ∗c}. Since
TE1

4 TE, by settingH = Eνm+1
and op(νm+1)c, Cfk(E1)·cH = ((((Eν0 ·op(ν1) Eγ(ν1))·op(ν2)

Eγ(ν2)) · · · ·op(νm) Eγ(νm)) ·op(νm+1) Eγ(νm+1) where νf is the node of TE la-
belled by f , ν0 is the k-child(νf), Γνf (E) = {ν1, . . . , νm, νm+1} and for
1 ≤ i ≤ m+ 1, op(νi) = c such that sym(father(νi)) ∈ {·c, ∗c}.

⊓⊔

Corollary 3. Let E be linear, f ∈ (ΣE)m and k ≤ m. Then |Cfk
j
(E)| ≤ |E |2.

Example 2. Let Σ be the ranked alphabet such that Σ0 = {a, b}, Σ1 = {h}
and Σ2 = {f}. Let E = (f(a, a) + f(a, a))∗a ·a h(b). Then E = (f1(a, a) +
f2(a, a))

∗a ·a h3(b). The ZPC-Structure associated with E is represented in Fig-
ure 1 restricted to some γ links. As stated in Proposition 7, Cf1

1
(E) = ((a ·a

(f1(a, a) + f2(a, a))
∗a) ·a h3(b)) = ((Eν0 ·a Eγν1

) ·a Eγν2
).

12

In order to identify the equivalent k-C-
Continuations, we can sort them in lexicographic
order. This can be done in O(|E |3) time and
space complexity using Paige and Tarjan’s Algo-
rithm [12]. This is due to the fact that the size
of k-C-Continuations is in O(|E |2) (by Corol-
lary 3). This complexity has been improved by
using k-Pseudo-Continuations instead of k-C-
Continuations [3,7].

·a

∗a

+

f1

a a

f2

a a

h3

b
νf1

ν0

ν1

ν2 ν3

Fig. 1. ZPC-Structure of E.
A k-Pseudo-Continuation lfk

j
(E) of fj in E is obtained from the k-C-Continuation

Cfk
j
(E) by replacing some subexpression F of E by a symbol ψ(h(F)) such that

for two subexpressions F and G of E: ψ(F) = ψ(G)⇔ F = G.

Definition 5. Let H be a regular expression over Σ and ψ be a bijection that

associates to each subexpression of E a symbol in an alphabet Ψ . We define the

word ψ′(H) over the alphabet Ψ ∪ {·a | a ∈ Σ0} inductively as follows:

ψ′(H) =







ψ′(F) ·c ψ(G) if H = F ·c G and G a subexpression of E
ψ(H) if H 6= F ·c G and H a subexpression of E
ε otherwise.

The function ψ′ is said to be an (E, Ψ)-encoding.

Definition 6. Let n and k be two integers such that 1 ≤ k ≤ n, fj be a sym-

bol in PosE (E) and ψ′ an (E, Ψ)-encoding for some alphabet Ψ . The k-Pseudo-
Continuation of fj in E, denoted by lfk

j
(E), is the word over Ψ ∪ {·a | a ∈ Σ0}

defined by lfk
j
(E) = ψ′(h(Cfk

j
(E))).

In the following, we consider that the pseudo-continuations of E are defined
over Ψ a finite subset of N, bounded by the number of subexpressions of E.

Lemma 4. Let E and F be two regular expressions over an alphabet Σ such

that E and F are two products of subexpressions of a regular expression H over

Σ. Let ψ′ be a (H,Ψ)-encoding. Then:
ψ′(E) = ψ′(F) ⇔ E = F .

Proof. Let us consider that ψ′ is associated with the bijection ψ. Let us consider
the possible roots of the expressions.

1. If the roots of E and F are notconcatenation products, ψ′(E) = ψ′(F) ⇔
E = F since ψ is a bijection and ψ′(E) = ψ(E) wedgeψ′(F) = ψ(F).

2. Let us suppose that, without loss of generality, only the root of E is acon-
catenation product ·c. Then the symbol ·c appears in ψ′(E) but not in ψ′(F).
Hence ψ′(E) 6= ψ′(F) and E 6= F .

3. Finally, let us suppose that E = E1 ·c E2 and F = F1 ·d F2.

(a) If E2 6= F2 then ψ(E) 6= ψ(F) and then ψ′(E) and ψ′(F) do not end
with the same symbol.

13

(b) Suppose that E2 = F2. If ·c 6= ·d, ψ′(E) ends with ·cψ(E2) 6= ·dψ(E2) ;
Hence ψ′(E) 6= ψ′(F) and E 6= F . Otherwise, by induction hypothesis,
ψ′(E1) = ψ′(F1)⇔ E1 = F1. Hence ψ

′(E1) ·c ψ(E2) = ψ′(F1) ·c ψ(F2) ⇔
E1 ·c E2 = F1 ·d F2.

⊓⊔

Proposition 8. The two following propositions hold:

1. |lfk
j
(E)| is at most linear w.r.t. |E |,

2.
∑

fj∈PosE (E)n,1≤k≤n |ψ
′(Eν

fk
j

)| is at most linear w.r.t. |E |, with νfk
j
= k-child(νfj).

Proof. We define the function nbdot(E) as the number of left-associated con-
catenation operators in E as follows:

nbdot(E) =

{

nbdot(F) + 1 if E = F ·c G,
0 otherwise.

Let us first prove that |ψ′(E)| ≤ 2nbdot(E) + 1. The proof proceeds by
induction in the structure of E.

1. Whenever E is not a product, ψ′(E) = ψ(E). Hence |ψ′(E)| = 1. Since
nbdot(E) = 0, the condition is satisfied.

2. Suppose that E = F ·c G. Hence
|ψ′(F ·c G)| ≤ |ψ′(F)|+ 2

≤ 2(nbdot(F)) + 1 + 2
= 2(nbdot(F) + 1) + 1
= 2(nbdot(E)) + 1.

Following Proposition 7, |lfk
j
(E)| ≤ |ψ′(Eν0)| + 2m where νf is the node

of TE labelled by f , ν0 is the k-child(νf), Γνf (E) = {ν1, . . . , νm} and for 1 ≤
i ≤ m, op(νi) = c such that sym(father(νi)) ∈ {·c, ∗c}. Since {ν1, . . . , νm}
are ancestors of ν0, |Eν0 | ≤ |E| − m. Consequently, nbdot(Eν0) ≤ |E| − m.
Moreover, from previous point, |ψ′(Eν0)| ≤ 2(nbdot(Eν0)) + 1. Consequently,
|lfk

j
(E)| ≤ 2(|E| −m) + 1 + 2m = 2|E|+ 1.

Furthermore, since |ψ′(Eν
fk
j

)| ≤ 2(nbdot(Eν
fk
j

)) + 1, it holds:
∑

fj∈PosE (E)n

∑

1≤k≤n |ψ
′(Eν

fk
j

)| ≤
∑

fj∈PosE (E)n

∑

1≤k≤n 2(nbdot(Eν
fk
j

)) + 1.

However, the concatenation operators below the node νfk
j
do not appears

below another symbol. Consequently,
∑

fj∈PosE (E)n

∑

1≤k≤n nbdot(Eν
fk
j

) ≤ |E|

Finally,
∑

fj∈PosE (E)n

∑

1≤k≤n |ψ
′(Eν

fk
j

)| ≤ 2|E|+ |Σ≥1|.

⊓⊔

Proposition 9. Let fj ∈ PosE (E)n, gi ∈ PosE (E)m, k ≤ n and p ≤ m be two

integers. Then h(Cfk
j
(E)) = h(Cgp

i
(E))⇔ lfk

j
(E) = lgp

i
(E).

Proof. Direct Corollary of Lemma 4. ⊓⊔

14

From Proposition 9 we can deduce that the k-C-Continuations identification
can be achieved by considering the k-Pseudo-Continuations. In the following
we show that this identification step (computation of ∼e) can be done with-
out the computation of the k-Pseudo-Continuations and that it amounts to the
minimization of a word acyclic deterministic automaton. Before seeing how the
identification of k-Pseudo-Continuations lfk

j
(E) is performed, we prove that the

computation of the function ψ can be done in a linear time in the size of E.
Let us consider the syntax tree TE associated with E. This syntax tree con-

tains all the subexpressions of E. Each node ν in TE corresponds to the subex-
pression Eν of E. The equivalence relation ∼ over the nodes of the tree TE
is defined by ν1 ∼ ν2 ⇔ Eν1 = Eν2 . We show that the computation of the
equivalence relation ∼ amounts to the minimization of the word acyclic deter-
ministic automaton AT

E
= (Q,ΣA, {νE}, {νT}, δ), where νE is the node asso-

ciated to the root of E, Q = Nodes(E) ∪ {νT } ∪ {⊥} with νT ,⊥ /∈ Nodes(E),
ΣA = Σ0 ∪ {g+, d+} ∪ {∗a, g·a , d·a | a ∈ Σ0} ∪ {f1, . . . , fn | f ∈ Σn, n ≥ 1},
and δ is defined by δ(ν, ∗a) = son(ν) if sym(ν) = ∗a, δ(ν, gsym(ν)) = left(ν)
and δ(ν, dsym(ν)) = right(ν) if sym(ν) ∈ {+, ·a, a ∈ Σ0}, δ(ν, sym(ν)) = νT if

sym(ν) ∈ Σ0, delta(ν, fk) = k-child(ν) if sym(ν) = f ∈ Σ≥1, and δ(ν, x) = ⊥
in all otherwise.

Lemma 5. E = F ⇔ L(ATE
) = L(ATF

).

Proof. Let ΣAE
(resp. ΣAF

) be the alphabet of the automaton ATE
(resp. ATF

).

1. If E = F then ATE
= ATF

and L(ATE
) = L(ATF

).
2. Suppose that E 6= F . Notice that any word w in L(ATE

) (resp. L(ATF
))

starts with a symbol associated with the root of E (resp. F).
(a) Hence, if the roots of E and F are distinct, then L(ATE

) ∩ L(ATF
) = ∅

; Since L(ATE
) is not empty by construction, L(ATE

) 6= L(ATF
).

(b) Otherwise, there exists an integer j such that E = x(E1, . . . , Ek), F =
x(F1, . . . , Fk) and Ej 6= Fj . By induction over the size of Ej .
i. If Ej ∈ Σ0, then since the roots are distincts, the word starting with

the symbol associated to the node x followed by the symbol a is in
L(ATE

) but not in L(ATF
).

ii. Otherwise, it holds by induction hypothesis that there exists a word
in L(ATEj

) not in L(ATFj
). Hence there exists a word starting with

a symbol associated to the node x followed by a word in L(ATEj
)

that is in L(ATE
) but not in L(ATF

).
⊓⊔

According to Lemma 5, ν1 ∼ ν2 ⇔ L(ATEν1
) = L(ATEν2

), that is the equiva-

lence relation ∼ coincides with Myhill-Nerode equivalence [11] over the states of
the automaton AT

E
, that can be computed in O(|E |) time and space complexity

using Revuz Algorithm [13].

Lemma 6. The computation of ψ(F) for all subexpression F of E can be done

in O(|E |) time and space complexity.

15

Proof. Let ν1 and ν2 be two nodes in TE . As ν1 ∼ ν2 ⇔ Eν1 = Eν2 ⇔ ψ(Eν1) =
ψ(Eν2), we can associate to each node ν in TE (each Eν) a symbol (ψ(Eν)) which
uniquely identifies its equivalence class [ν]∼. Furthermore, according to Lemma 5,
the computation of the equivalence relation∼ amounts to the minimization of the
word acyclic deterministic automaton AT

E
, which can be performed in O(|E |)

using Revuz Algorithm [13]. ⊓⊔

·a

∗a

+

f1

a a

f2

a a b

h3

νT

g·a

d·a

∗a

h1

g+ d+

f1 f2 f1 f2

a a a a
b

Fig. 2. The automaton AT
E

.

·a

∗a

+

f1

a a

f2

a a b

h3

1 2

3 6

4

5

7

Fig. 3. The Equivalence Classes.

Example 3. Let us consider the regular expression E = (f(a, a) + f(a, a))∗a ·a
h(b) of the Example 2. Applying Myhill-Nerode equivalence [11] to the states
of the automaton AT

E
(Figure 2) results in 7 equivalence classes labeled by

Ψ = {1, 2, . . . , 7}. For example ψ(f(a, a)) = 3 and ψ(E) = 7 (Figure 3). Finally,
lf1

1
(E) = 1 ·a 6 ·a 5.

Recall that the k-Pseudo-Continuation identification can be achieved inO(|E |2)
[4,8] using Paige and Tarjan’s sorting algorithm [12]. In what follows we show
that this step amounts to the minimization of the acyclic deterministic word
automaton BT

E

= (QB, ΣB, {νT }, {νE}, δB) defined with νT /∈ Nodes(E) and

F = {fk
j | 1 ≤ k ≤ m, fj ∈ PosE (E)m} by:

– QB = (Nodes(E) \Σ0) ∪ F ∪ {νT ,⊥},
– ΣB = {ψ(ν) | ν ∈ Nodes(E) ∩QB} ∪ F ∪ {·a | a ∈ Σ0} ∪ {ε},
– δB is defined as follows:
• δ(νT , f i

j) = f i
j for all f i

j ∈ F,

• δ(fk
j , ψ

′(h(Eνk))) = fj if νk is the kth child of fj,
• δ(ν, ·aψ(Eγ(ν))) = father(ν) if sym(father(ν)) ∈ {·a, ∗a} and γ(ν) 6= ⊥,
• δ(ν, ε) = father(ν) and if γ(ν) = ⊥ and δ(ν, x) = ⊥ in all otherwise.

Proposition 10. L(BT
E
) = {fk

j · lfk
j
(E) | fj ∈ PosE (E)m, k ≤ m}

Proof. By construction of BT
E
, there exists a path from any state fk

j with
fj ∈ PosE (E)m and 1 ≤ k ≤ m to the root of E labelled by ψ′(Eν0) ·op(ν1)
ψ(Eγ(ν1)) · · · ·op(νm) ψ(Eγ(νm)) where νfj is the node of TE labelled by fj , ν0
is the k-child(νf), Γνfj

(E) = {ν1, . . . , νm} and for 1 ≤ i ≤ m, op(νi) = c

such that sym(father(νi)) ∈ {·c, ∗c}. This word exactly corresponds to the word
ψ′(h(Cfk

j
(E))) = lfk

j
(E). ⊓⊔

16

Let fj and gi be two positions in PosE (E). As a direct consequence of Propo-
sition 10, Cfk

j
(E) ∼e Cgp

i
(E) if and only if the states fk

j and gpi of BT
E
are equiv-

alent. We eliminate the ε-transitions from the automaton BT
E

. Since it has no

ε-transitions cycles, this elimination can be performed in a linear time in the
size of E. Hence, we obtain a more compacted but equivalent structure, which
we denote by ε-free(BT

E

).

νT

f2
2

f2

f1
2

+

f1

f2
1f1

1

∗a

·a

h1
3

h3

f2
2

f1
2

f2
1

f1
1

h1
3

2
1111

ε ε

·a5

·a6

ε

Fig. 4. The automaton BT
E
.

νT

f2
2f1

2

+

f2
1f1

1

∗a

·a

h1
3

f2
2

f1
2

f2
1

f1
1

h1
3

2

1
11

1

·a5

·a6

Fig. 5. The automaton ε-free(BT
E
).

The computation of the equivalence relation ∼e can be performed by the
computation of Myhill-Nerode relation [11] on the states of the automaton
ε-free(BT

E

). This automaton is deterministic and acyclic.

Theorem 3. The relation ∼e can be computed in O(|E |) time complexity.

Proof. The equivalence relation∼e coincides with Myhill-Nerode equivalence [11]
on the states of the automaton ε-free(BT

E

).

This automaton is deterministic and acyclic and its size is linear with respect
to |E | (Proposition 8). That can be computed in O(|E |) time and space com-
plexity using Revuz Algorithm [13]. ⊓⊔

17

Example 4. Let us consider the regular
expression E = (f(a, a) + f(a, a))∗a ·a
h(b) of Example 2. The automaton BT

E

is represented by Figure 4. The automa-
ton ε-free(BT

E

) is represented in Fig-

ure 5. Applying Myhill-Nerode equivalence
to the automaton ε-free(BT

E

) results in

the automaton in Figure 6. We deduce
from this automaton that Cf1

1
(E) ∼e

Cf2
1
(E) ∼e Cf1

2
(E) ∼e Cf2

2
(E). Conse-

quently the set of states of CE�∼e
is

{[Cε1(E)], [Cf1
1
(E)], [Ch1

3
(E)]}.

νT

{f1
1 , f

2
1 , f

1
2 , f

2
2 }

+

∗a

·a

{h1
3}

f1
1 , f

2
1 , f

1
2 , f

2
2 h1

3

1

·a5

·a6

2

Fig. 6. The Minimal Automaton
of ε-free(BT

E
).

4.2 Computation of the set of transition rules

Using Proposition 3 and Proposition4, we can show that the computation of the
set of transitions of the equation tree automaton is performed by computing
the function Follow. The computation of a transition rule using Proposition 3
requires a linear time, according to Proposition 2. Then for all transition rules
we get an O(|Q�∼e

| × |E |) time and space complexity where Q is the set of
k−C-Continuations of E. The computation of the set of states QC�∼e

make
possible the creation of non-coaccessible states. Removing these states requires
an O(|QC�∼e

| · |E |) time complexity.

Theorem 4. The equation tree automaton AE of E can be computed in O(|Q| ·
|E |) time and space complexity with Q the set of states of AE .

Proof. The equivalence relation ∼e can be computed in O(|E |) time and space
complexity and the set of transition rules can be performed by computing the
function Follow. The computation of a transition rule using Proposition 3 re-
quires a linear time, according to Proposition 2. Then for all transition rules we
get an O(|QC�∼e

| × |E |) time and space complexity where QC is the set of
k−C-Continuations of E. Finally, removing not coaccessible states can be per-
formed in linear time and results in the equation automaton. ⊓⊔

5 A Full Example

Let E = h(h(c, b)·ca, a)·b(f(a, h(c, b))·ca+g(a))∗b be a regular expression defined
over the ranked alphabet Σ such that Σ0 = {a, b, c}, Σ1 = {g}, Σ2 = {f, h}
and E = h1(h2(c, b) ·c a, a) ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b be its linearized form.

The computation of the k-C-Continuations of the E using the Definition 3 is
given in Table 1.

18

Ch1
1
(E) = (h2(c, b) ·c a) ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Ch2
1
(E) = a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Cf1
3
(E) = a ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Cf2
3
(E) = (h4(c, b) ·c a) ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Ch1
2
(E) = c ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Ch2
2
(E) = b ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Ch1
4
(E) = c ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Ch2
4
(E) = b ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b ,

Cg1
5
(E) = a ·b (f3(a, h4(c, b)) ·c a+ g5(a))

∗b .

Table 1. The k-C-Continuations of E.

From Table 1, the Follow function can be computed (Table 2).

x
j
i Follow(E, xi, j)

h1

1 {h2}
h2

1 {a}
h1

2 {a}
h2

2 {g5, f3}
f1

3 {a}
f2

3 {h4}
h1

4 {a}
h2

4 {g5}
g15 {a}

Table 2. The function Follow.

·b

h1 ∗b

a·c

ah2

c b

+

g5

a

·c

af3

a h4

c b

ν1

ν2

ν3 ν4

ν5

ν6

ν7 ν8

Fig. 7. The ZPC-Structure of E.

Finally, from Table 2, the transition function of CE is the following:
h(Ch1

1
(E), Ch2

1
(E)) → Cε1 (E) h(Ch1

2
(E), Ch2

2
(E)) → Ch1

1
(E)

a → Ch2
1
(E) a → Ch1

2
(E)

g(Cg1
5
(E)) → Ch2

2
(E) f(Cf1

3
(E), Cf2

3
(E)) → Ch2

2
(E)

a → Cf1
3
(E) h(Ch1

4
(E), Ch2

4
(E)) → Cf2

3
(E)

a → Cg1
5
(E) a → Ch1

4
(E)

f(Cf1
3
(E), Cf2

3
(E)) → Ch2

4
(E) g(Cg1

5
(E)) → Ch2

4
(E)

The ZPC-structure associated to E is represented in Figure 7. The dotted
links in Figure 7 represent the function γ:

γ(ν2) = ν5, γ(ν3) = ν4, γ(ν6) = ν5, γ(ν7) = ν8.

The automaton AT
E
associated with E is represented in Figure 8.

19

·b

h1 ∗b

a·c

ah2

c b

+

g5

a

·c

af3

a h4

c b

νT

g·b d·b

h2h1 ∗b

d·c
g·c d+g+

g1g·c d·c

f1 f2

h1 h2

h1 h2

a

a
a

a

c b

a

c
b

Fig. 8. The automaton AT
E
.

Applying Myhill-Nerode equivalence relation over the states of the automaton
AT

E
results in the automaton in Figure 9.

g5

+

∗b ·c

·b

h1

·c

f3

{h2, h4}

c

b

νT a

d·b

∗b

d+

g+

g·c

f2

g·b
h1

g·c

h1

h2

c

b

a

g1f1

f2

d·c
h2

Fig. 9. The minimal automaton of AT
E
.

20

The computation of the equivalence relation ∼ over the syntax tree associ-
ated to E is represented in the Figure 10. The number of equivalence classes
in Figure 10 (12) corresponds exactly to the number of states of the minimal
automaton of AT

E
. From these equivalence classes, we can define the ψ function

(see Table 3).

ψ(1) = a

ψ(2) = b

ψ(3) = c

ψ(4) = h(c, b)
ψ(5) = g(a)
ψ(6) = h(c, b) ·c a
ψ(7) = h(h(c, b) ·c a, a)
ψ(8) = f(a, h(c, b))
ψ(9) = f(a, h(c, b)) ·c a
ψ(10) = f(a, h(c, b)) ·c a+ g(a)
ψ(11) = (f(a, h(c, b)) ·c a+ g(a))∗b

ψ(12) = E

Table 3. The function ψ.

·b

h1 ∗b

a·c

ah2

c b

+

g5

a

·c

af3

a h4

c b

12

7 11

6 1

1

23

4

10

5

11

2

1

3

9

8

4

Fig. 10. The equivalence classes.

As we have seen, the computation of the equivalence relation ∼e turns in
the minimization of an acyclic deterministic automaton. The automaton BT

E

associated with E is represented in Figure 11.

·b

h1 ∗b

·ch1
1 h2

1
+

h2

h1
2 h2

2

·c

f3

g5

g1
5

h4f1
3 f2

3

h1
4 h2

4

νT

·b11 ε

ε
1

4 ·c 1 ·b11

ε

1

ε

·c1

ε1
4

·c1

3 2

3 2

h1
1

h2
1

h1
2

h2
2

f1
3 f2

3

h1
4

h2
4 g1

5

Fig. 11. The automaton BT
E
.

We eliminate the ε-transitions from the automaton BT
E

. Since this last has

no ε-transitions cycles, this elimination can be performed in a linear time in the
size of E. Hence, we obtain a structure which we denote ε-free(BT

E

).

21

·b

h1

h1
1 h2

1
+

h2

h1
2 h2

2
f3 g1

5

f1
3 f2

3

h1
4 h2

4

νT

·b11

1

4 ·c 1
·b11

1·c1

1
4

·c1

3 2

3 2

h1
1

h2
1

h1
2

h2
2

f1
3 f2

3

h1
4

h2
4 g1

5

Fig. 12. The automaton ε-free(BT
E
).

The computation of the equivalence relation ∼e amounts to apply Myhill-
Nerode relation on the states of the automaton ε-free(BT

E

). The result is repre-

sented in Figure 13.

{h1
1, f

2
3 }

f1
3

νT

{h1
2, h

1
4}

{h2
2, h

2
4}

{h2
1, g

1
5}

{h2, f3} {h1,+} ·b

h1
1, f

2
3

f1
3 1

h1
2, h

1
4

h2
2, h

2
4

h2
1, g

1
5

3

2

·c1

4 ·c 1

1

·b11

Fig. 13. The Minimal Automaton of ε-free(BT
E
).

The language recognized by BT
E
is the following:

22

L(BT
E
) = {h22, h

2
4} · {2 ·c 1 ·b 11}

∪ {h12, h
1
4} · {3 ·c 1 ·b 11}

∪ {h11, f
2
3 } · {4 ·c 1 ·b 11}

∪ {h21, g
1
5} · {1 ·b 11}

∪ {f1
31 ·c 1 ·b 11}

Let us notice that Proposition 9 is satisfied in Table 4.

x xw ∈ L(BT
E
) Cx(E)

h1

1 h1

14 ·c 1 ·b 11 (h2(c, b) ·c a) ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

h2

1 h2

11 ·b 11 a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

h1

2 h1

23 ·c 1 ·b 11 c ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

h2

2 h2

22 ·c 1 ·b 11 b ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

f1

3 f1

3 1 ·c 1 ·b 11 a ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

f2

3 f2

3 4 ·c 1 ·b 11 (h2(c, b) ·c a) ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

h1

4 h1

43 ·c 1 ·b 11 c ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

h2

4 h2

42 ·c 1 ·b 11 b ·c a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

g15 g151 ·b 11 a ·b (f3(a, h4(c, b)) ·c a+ g5(a))
∗b

Table 4. L(BT
E
) and k-C-Continuations.

Finally, the equation automatonAE associated with E is obtained from merg-
ing the states and the transitions using ∼e. The transition function is:

h({Ch1
1
(E), Cf2

3
(E)}, {Ch2

1
(E), Cg1

5
(E)}) → Cε1(E)

a → {Ch2
1
(E), Cg1

5
(E)}

h({Ch1
2
(E), Ch1

4
(E)}, {Ch2

2
(E), Ch2

4
(E)}) → {Ch1

1
(E), Cf2

3
(E)}

a → {Ch1
2
(E), Ch1

4
(E)}

g({Cg1
5
(E), Ch2

1
(E)}) → {Ch2

2
(E), Ch2

4
(E)}

f({Cf1
3
(E)}, {Cf2

3
(E), Ch1

1
(E)}) → {Ch2

2
(E), Ch2

4
(E)}

a → {Cf1
3
(E)}

6 Conclusion

We presented a new and more efficient algorithm for the computation of the
equation tree automaton from a regular tree expression by extending the notion
of k-c-continuation from words to trees. We proved that a regular tree expression
E can be converted into an equation tree automaton with an O(|QC�∼e

| · |E |))
time and space complexity where Q is the set of k-C-Continuations of E.

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton
constructions. Theoretical computer Science 155 (1996) 291–319

2. Bruggemann-Klein, A.: Regular expressions into finite automata. Theoretical
computer Science 120 (1993) 197–213

3. Champarnaud, J.M., Ziadi, D.: From c-continuations to new quadratic algorithms
for automaton synthesis. Intern. J. of Algebra and Computation 11(6) (2001)
707–735

23

4. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoretical Computer Science 289(1) (2002) 137–163

5. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Loding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (October 2007)

6. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys
16 (1961) 1–53

7. Khorsi, A., Ouardi, F., Ziadi, D.: Fast equation automaton computation. Journal
of Discrete Algorithms 6 (2008) 433–448

8. Kuske, D., Meinecke, I.: Construction of tree automata from regular expressions.
RAIRO - Theoretical Informatics and Applications 45 (2011) 347–370

9. Laugerotte, E., Ouali-Sebti, N., Ziadi, D.: From regular tree expression to position
tree automaton. Lecture Notes in Computer Science 7810 (2013) 395–406

10. Murata, M.: Hedge automata: a formal model for xml schemata. Available on:
http://www.xml.gr.jp/relax/hedge_nice.html (2000)

11. Nerode, A.: Linear automata transformation. Proc. Amer. Math. Soc. 9 (1958)
541–544

12. R. Paige, R.T.: Three partition refinement algorithms. SIAM Journal on Comput-
ing 16 (6) (1987) 973–989

13. Revuz, D.: Minimization of acyclic deterministic automata in linear time. Theo-
retical Computer Science 92(1) (1992) 181–189

14. Trakhtenbrot, B.: Origins and metamorphoses of the trinity: Logic, nets, automata.
In Proceedings, Tenth Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press (June 1995) 26–29

15. Ziadi, D., Ponty, J.L., Champarnaud, J.M.: Passage d’une expression rationnelle a
un automate fini non deterministe. Bulletin of the Belgian Mathematical Society
- Simon Stevin 4 (1997) 177–203

24

http://www.grappa.univ-lille3.fr/tata
http://www.xml.gr.jp/relax/hedge_nice.html

	An Efficient Algorithm for the Equation Tree Automaton via the k-C-Continuations

