Skip to main content

Dynamic Adaptive Neural Network Array

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

We present the design-scheme and physical implementation for a Dynamic Adaptive Neural Network Array (DANNA) based upon the work by Schuman and Birdwell [1,2] and using a programmable array of elements constructed with a Field Programmable Gate Array (FPGA). The aim of this paper is to demonstrate how a single programmable neuromorphic element can be designed to support the primary components of a dynamic and adaptive neural network, e.g. a neuron and a synapse, and be replicated across a FPGA to yield a reasonably large programmable DANNA of up to 10,000 neurons and synapses. We describe element programmability, how the dynamic components of a neuron and synapse are supported, and the structure used to support the monitoring and control interface. Finally, we present initial results from simulations of the hardware, the projected performance of the array elements and the physical implementation of a DANNA on a Xilinx FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuman, C.D., Birdwell, J.D.: Variable structure dynamic artificial neural networks. Biologically Inspired Cognitive Architectures 6, 126–130 (2013)

    Article  Google Scholar 

  2. Schuman, C.D., Birdwell, J.D.: Dynamic artificial neural networks with affective systems. PLOS One 8(11) (November 2013)

    Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: Propagation of electrical signals along giant nerve fibers. Proceedings of the Royal Society of London, Series B, Biological Sciences, 177–183 (1952)

    Google Scholar 

  4. Rosenblatt, F.: Principles of Neurodynamics. Spartan, Washington, DC (1961)

    Google Scholar 

  5. Dayan, P., Abbott, I.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2001)

    Google Scholar 

  6. Trappenberg, T.P.: Fundamentals of Computational Neuroscience, 2nd edn. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company (1994)

    Google Scholar 

  8. Lau, C. (ed.): Neural Networks: Theoretical Foundations and Analysis. IEEE Press (1992)

    Google Scholar 

  9. Kandel, E., Schwartz, J., Jesell, T.: Principles of Neural Science, 4th edn. McGraw-Hill Medical (2000)

    Google Scholar 

  10. Perez-Uribe, A.: Artificial Neural Networks: Algorithms and Hardware Implementation. In: Bio-Inspired Computing Machines: Toward Novel Computational Architectures, pp. 289–316. PPUR Press (1998)

    Google Scholar 

  11. Leiner, B.J., Lorena, V.Q., Cesar, T.M., Lorenzo, M.V.: Hardware architecture for FPGA implementation of a neural network and its application in images processing. In: Proceedings of the 5th Meeting of the Electronics, Robotics and Automotive Mechanics Conference, pp. 405–410 (October 2008)

    Google Scholar 

  12. Saif, S., Abbas, H.M., Nassar, S.M., Wahdan, A.A.: An FPGA implementation of a neural optimization of block truncation coding for image/video compression. Microprocessors and Microsystems 31(8), 477–486 (2007)

    Article  Google Scholar 

  13. Stepanova, M., Lin, F.: A Hopfield Neural Classifier and its FPGA implementation for identification of symmetrically structured DNA Motifs. In: Proceedings of the International Joint Conference on Neural Networks, Orlando, FL (August 2007)

    Google Scholar 

  14. Moradi, S., Imam, N., Manohar, R., Indiveri, G.: A memory-efficient routing method for large-scale spiking neural networks. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4 (September 2013)

    Google Scholar 

  15. Vogelstein, R., Mallik, U., Vogelstein, J., Cauwenberghs, G.: Dynamically recongifurable silicon array of spiking neurons with conductance-based synapses. IEEE Transactionas of Neural Networks 18(1), 253 (2007)

    Article  Google Scholar 

  16. Indiveri, B., Chicca, E., Douglas, R.: A VLSI reconfigurable network of integrate-and-fire neurons with spike-based learning synapses. In: ESAN 2004, pp. 405–410 (2004)

    Google Scholar 

  17. Graas, E., Brown, E., Lee, R.: An FPGA-based approach to high-speed simulation of conductance-based neuron models. NeuroInformatics 2(4), 417–435 (2004)

    Article  Google Scholar 

  18. Pearson, M., Gilhespy, I., Gurney, K., Melhuish, C., Mitchinson, B., Nibouche, M., Pipe, A.: A real-time, FPGA based, biologically plausible neural network processor. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 1021–1026. Springer, Heidelberg (2005)

    Google Scholar 

  19. Cassidy, A., Denham, S., Kanold, P., Andreou, A.: FPGA based silicon spiking neural array. In: Proceedings of the Biomedical Circuits and Systems Conference, Montreal, Que, pp. 75–78 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dean, M.E., Schuman, C.D., Birdwell, J.D. (2014). Dynamic Adaptive Neural Network Array. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics