Skip to main content

Artificial Astrocyte Networks, as Components in Artificial Neural Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

Recent findings in neurophysiology provided evidence that not only neurons but also networks of glia-astrocytes are responsible for processing information in the human brain. Based on these new findings, information processing in the brain is defined as communication between neurons-neurons, neurons-astrocytes and astrocytes-astrocytes. Artificial neural networks (ANNs) model the neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte connections. This research introduces a new model of ANGN that captures these three possible communications. In this model, random networks of artificial glia astrocytes are implemented on top of a typical neural network. The networks are tested on two classification problems, and the results show that on certain combinations of parameter values specifying astrocyte connections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that provide more realistic models of the human brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarellos-González, A., Pazos, A., Porto-Pazos, A.B.: Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks. Computational and Mathematical Methods in Medicine 2012, 10 (2012)

    Article  Google Scholar 

  2. Araque, A., Carmignoto, G., Haydon, P.G.: Dynamic signaling between astrocytes and neurons. Annual Review of Physiology 63(1), 795–813 (2001)

    Article  Google Scholar 

  3. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia, the unacknowledged partner. Trends in Neurosciences 22(5), 208–215 (1999)

    Article  Google Scholar 

  4. Bonansco, C., Couve, A., Perea, G., Ferradas, C.Á., Roncagliolo, M., Fuenzalida, M.: Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. European Journal of Neuroscience 33(8), 1483–1492 (2011)

    Article  Google Scholar 

  5. Giaume, C., Koulakoff, A., Roux, L., Holcman, D., Rouach, N.: Astroglial networks: a step further in neuroglial and gliovascular interactions. Nature Reviews Neuroscience 11(2), 87–99 (2010)

    Article  Google Scholar 

  6. Hatton, G.I., Parpura, V.: Glial neuronal signaling, vol. 1. Springer (2004)

    Google Scholar 

  7. Haydon, P.G.: Glia: listening and talking to the synapse. Nature Reviews Neuroscience 2(3), 185–193 (2001)

    Article  Google Scholar 

  8. Ikuta, C., Uwate, Y., Nishio, Y.: Chaos glial network connected to multi-layer perceptron for solving two-spiral problem. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1360–1363. IEEE (2010)

    Google Scholar 

  9. Ikuta, C., Uwate, Y., Nishio, Y.: Performance and features of multi-layer perceptron with impulse glial network. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2536–2541. IEEE (2011)

    Google Scholar 

  10. Kim, H., Park, H.: Data reduction in support vector machines by a kernelized ionic interaction model. In: SDM. SIAM (2004)

    Google Scholar 

  11. Konishi, E.: Modeling quantum mechanical observers via neural-glial networks. International Journal of Modern Physics B 26(09) (2012)

    Google Scholar 

  12. Lallouette, J., Berry, H.: Topology drives calcium wave propagation in 3d astrocyte networks. In: Proceedings of the European Conference on Complex Systems 2012, pp. 453–463. Springer (2013)

    Google Scholar 

  13. Pannasch, U., Vargová, L., Reingruber, J., Ezan, P., Holcman, D., Giaume, C., Syková, E., Rouach, N.: Astroglial networks scale synaptic activity and plasticity. Proceedings of the National Academy of Sciences 108(20), 8467–8472 (2011)

    Article  Google Scholar 

  14. Pasti, L., Volterra, A., Pozzan, T., Carmignoto, G.: Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. The Journal of Neuroscience 17(20), 7817–7830 (1997)

    Google Scholar 

  15. Perea, G., Araque, A.: Communication between astrocytes and neurons: a complex language. Journal of Physiology-Paris 96(3), 199–207 (2002)

    Article  Google Scholar 

  16. Perea, G., Araque, A.: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. The Journal of Neuroscience 25(9), 2192–2203 (2005)

    Article  Google Scholar 

  17. Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317(5841), 1083–1086 (2007)

    Article  Google Scholar 

  18. Perea, G., Araque, A.: Glia modulates synaptic transmission. Brain Research Reviews 63(1), 93–102 (2010)

    Article  Google Scholar 

  19. Perea, G., Navarrete, M., Araque, A.: Tripartite synapses: astrocytes process and control synaptic information. Trends in Neurosciences 32(8), 421–431 (2009)

    Article  Google Scholar 

  20. Pereira Jr., A., Furlan, F.A.: Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Progress in Neurobiology 92(3), 405–420 (2010)

    Article  Google Scholar 

  21. Pirttimaki, T.M., Parri, H.R.: Astrocyte plasticity implications for synaptic and neuronal activity. The Neuroscientist 19(6), 604–615 (2013)

    Article  Google Scholar 

  22. Porto, A.: Computational models for optimizing the learning and the information processing in adaptive systems. Ph. D. Thesis, Faculty of Computer Science, University of A Coruña (2004)

    Google Scholar 

  23. Porto-Pazos, A.B., Veiguela, N., Mesejo, P., Navarrete, M., Alvarellos, A., Ibáñez, O., Pazos, A., Araque, A.: Artificial astrocytes improve neural network performance. PLoS One 6(4), e19109 (2011)

    Google Scholar 

  24. Robertson, J.M.: The astrocentric hypothesis: proposed role of astrocytes in consciousness and memory formation. Journal of Physiology-Paris 96(3), 251–255 (2002)

    Article  Google Scholar 

  25. Rusakov, D.A., Zheng, K., Henneberger, C.: Astrocytes as regulators of synaptic function a quest for the ca2+ master key. The Neuroscientist 17(5), 513–523 (2011)

    Article  Google Scholar 

  26. Sajedinia, Z.: Artificial glia astrocytes; a new element in adaptive neuro fuzzy systems. In: Proceedings of the 22th Annual Newfoundland Electrical and Computer Engineering Conference, NECEC 2013 (2013)

    Google Scholar 

  27. Wade, J., McDaid, L., Harkin, J., Crunelli, V., Kelso, S.: Self-repair in a bidirectionally coupled astrocyte-neuron (an) system based on retrograde signaling. Frontiers in Computational Neuroscience 6 (2012)

    Google Scholar 

  28. Wolberg, W.H., Street, W.N., Heisey, D.M., Mangasarian, O.L.: Computerized breast cancer diagnosis and prognosis from fine-needle aspirates. Archives of Surgery 130(5), 511 (1995)

    Article  Google Scholar 

  29. Wolberg, W.H., Street, W.N., Mangasarian, O.: Machine learning techniques to diagnose breast cancer from image-processed nuclear features of fine needle aspirates. Cancer Letters 77(2), 163–171 (1994)

    Article  Google Scholar 

  30. Wolberg, W.H., Street, W.N., Mangasarian, O.L.: Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Analytical and Quantitative Cytology and Histology 17(2), 77–87 (1995)

    Google Scholar 

  31. Zhou, Z.H., Jiang, Y.: Nec4. 5: neural ensemble based c4. 5. IEEE Transactions on Knowledge and Data Engineering 16(6), 770–773 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Sajedinia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sajedinia, Z. (2014). Artificial Astrocyte Networks, as Components in Artificial Neural Networks. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics