
Design and implementation of an
improved datacenter broker policy to
improve the QoS of a cloud
Conference or Workshop Item

Accepted Version

Chatterjee, Tamojit, Ojha, Varun ORCID logoORCID:
https://orcid.org/0000-0002-9256-1192, Adhikari, Mainak,
Banerjee, Sourav, Biswas, Utpal and Snášel, Václav (2014)
Design and implementation of an improved datacenter broker
policy to improve the QoS of a cloud. In: Proceedings of the
Fifth International Conference on Innovations in Bio-Inspired
Computing and Applications IBICA, 23-25 Jun 2014, Ostrava,
Czech Republic, pp. 281-290. doi: https://doi.org/10.1007/978-
3-319-08156-4_28 Available at
https://centaur.reading.ac.uk/93563/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1007/978-3-319-08156-4_28
To link to this article DOI: http://dx.doi.org/10.1007/978-3-319-08156-4_28

Publisher: Springer Science \mathplus Business Media

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

1

Design and Implementation of an improved Datacenter

Broker policy to improve the QoS of a Cloud

Tamojit Chatterjee1, Varun Kumar Ojha2, Mainak Adhikari3, Sourav Banerjee1,Utpal

Biswas4, Vaclav Snasel2

1Dept. of Computer Science & Engineering, Kalyani Govt. Engineering College, India

{tamojit.chatterjee9,souravacademia}@gmail.com

 2IT4Innovations, VSB Technical University of Ostrava, Ostrava, Czech Republic

{varun.kumar.ojha,vaclav.snasel}@vsb.cz
3Dept. of Computer Science & Engg., IMPS College of Engineering and Technology, India

onlinemainak@yahoo.com
4Dept. of Computer Science & Engg., University of Kalyani, India

utpal01in@yahoo.com

Abstract. Cloud Computing offers various remotely accessible services to users

either free or on payment. A major issue with Cloud Service Providers (CSP) is

to maintain Quality of Service (QoS). The QoS encompasses different

parameters, like, smart job allocation strategy, efficient load balancing,

response time optimization, reduction in wastage of bandwidth, accountability

of the overall system, best Virtual Machine (VM) (which reduce the overall

execution time of the requested Cloudlets) selection etc. The Datacenter Broker

(DCB) policy helps binding a Cloudlet with a VM. An efficient DCB policy

reduces the overall execution time of a Cloudlet. Allocating cloudlets properly

to the appropriate VMs in a Datacenter makes a system active, alive and

balanced. In present study, we proposed a conductance algorithm for effective

allocation of Cloudlets to the VMs in a Datacenter by taking into consideration

of power and capacity of VMs, and length of Cloudlets. Experimental results

obtained using CloudSim toolkit under heavy loads, establishes performance

supremacy of our proposed algorithm over existing DCB algorithm.

Keywords: Cloud Computing, Quality of Service, Cloud Service Provider,

Virtual Machine, Datacenter, Datacenter Broker.

1 Introduction

Cloud computing [1, 2, 3, 14] is an emerging computer paradigm on the underlying

foundations of service oriented architecture [4, 5], virtualization [7, 13] and utility

computing. It has brought the concept of physical location independence to its true

meaning. Since, what it does, is provided users with high end infrastructure even

when the user is at a location where such infrastructure is impossible to setup. Cloud

computing is thus a business package where companies provide computation power,

2

huge storage space and various other software services to user applications through a

common interface without the knowledge of the location of resources. In this domain,

the background activities like Virtual Machine (VM) allocation, load sharing, load

balancing, process migration, distributed shared memory access is completely

abstracted from the user’s purview. Here, the end users or the customers can access

the cloud based applications [5, 6] as well as infrastructure through logging in to a

Cloud interface. The Cloud application providers strive to give the same or better

service and performance than if the software programs were installed locally on end-

user machines. The broker policy for binding or allocating Cloudlet to VM in a

heterogeneous Cloud like environment is an important issue. To make the Cloud

services proficient in that environment, one of its challenges is to provide an efficient

broker policy. The Cloudlet binding policy plays a vital role to improve the overall

performance and minimize the execution time. So many broker policies are there in

distributed computing to allocate the Cloudlets to the different resources or VMs

optimally. A proper allocation policy may lead to a good assignment of Cloudlets to

the suitable resources or VMs that may eventually lead to improve the Quality of

Service of the overall system.

In present study, we proposed an improved Datacenter Broker algorithm that will

allocate a Cloudlet to a VM, on providing the correct VM with correct load, so that

they are not idle in a Datacenter and as a result the finish time of the Cloudlets are

low and hence the system utilization has been improved. It also takes length of the

Cloudlets into consideration to be processed, so that lengthy Cloudlets are allocated to

the most powerful VMs. We are using the CloudSim 3.0.3 simulation platform [9, 18]

which supports First Come First Serve (FCFS) policy [7] and Round Robin (RR)

scheduling strategies for internal scheduling of jobs as well as for VM creation. FCFS

and RR suffer from Long average waiting time for longer jobs necessitating for the

deployment of a better scheduling strategy at the cluster level. Our proposed

Datacenter Broker algorithm provides better result than the aforementioned policies.

It takes into consideration the length of the Cloudlets to be processed so the lengthy

(CPU intensive) cloudlets go the most powerful VMs.

The remaining part of this paper is organized as follows. Section 2 described about

the CloudSim Toolkits. In section 3, we shall discuss our proposed DCB algorithm for

Cloudlet allocation in a VM by Datacenter Broker with an example to illustrate the

prominence of the proposed algorithm. In section 4, comparison and simulated result

is shown. Finally, section 5 shall conclude our discussion with future research

direction.

2 Cloudsim Toolkits

Several Grid simulators [10, 12], such as GridSim, SimGrid, and GangSim are

capable of modelling and simulating the Grid application in a distributed

environment, but fails to support the infrastructure and application-level requirements

arising from Cloud computing paradigm [16]. A Cloud infrastructure modelling and

simulation toolkits must support for real-time trading of services between customers

3

and providers. Open source CloudSim framework [18] shown in figure 1 is developed

on GridSim toolkit [17] offers support for economic-driven resource management and

application scheduling simulation. It provides users a series of extended entities and

methods. In addition, it helps users to analyze their own scheduling and allocation

strategy at different levels including modification of module deployment techniques

and conduct related performance testing by expanding few interfaces. Present study

aims at expanding CloudSim by utilizing the broker policy. The Datacenter Broker

policy is a decision making procedure through which makes the best match between

cloudlets and VMs. Modules of CloudSim toolkit which relevance to our research are

as follows.

Fig. 1. Cloudsim Work Style

• Cloud Information Service (CIS) - CIS [7] provides database level match-

making services; it maps user requests to suitable cloud providers. CIS and

Datacenter Broker of CloudSim realized resource discovery and information

interaction, it is the core of simulated scheduling [17, 18, 19].

• Datacenter Broker (DCB) - This class models a broker, which is responsible for

mediating between users and service providers depending on users’ QoS

requirements [7]. And the broker deploys service tasks across clouds. User-

developed scheduling algorithms are implemented in Datacenter Broker method.

• VM Scheduler – VM scheduler is an abstract class implemented by a Host

component, represents the policies (space-shared, time-shared) required for

allocating processing power to VMs [8].

4

• VM Allocation Policy - VM Allocation Policy is used to select available host in

a Datacenter, which meets the memory, storage, and availability requirement for

a VM deployment. The Datacenter Broker allocates or binds the cloudlets to the

first available VM. In table I, there are four jobs and two VMs. According to this

policy, Cloudlet CL1 allocated to VM1, CL2 allocated to VM2 and CL3 and CL4

allocated to the VM1 and VM2 respectively.

Table 1. Cloudlet Binding with VM

CLOUDLET VIRTUAL MACHINE (VM)

CL1 VM1

CL2 VM2

CL3 VM1

CL4 VM2

The existing Datacenter Broker Policy suffers from various disadvantages, like

it is non-intelligent in the decisions it takes that don’t consider the capacity of the

VMs and the length of the Cloudlets. Hence it suffers from the following drawbacks:

As a result, large Cloudlets are often assigned to the VMs with low MIPS and hence

take a longer time to execute as well as increasing the waiting time and the response

time of the Cloudlets. More over sometimes it may also happen that the most

powerful VMs get the least lengthy Cloudlets and hence its resource utilization gets

wasted and at the same time decreasing the overall performance of the system.

3 Proposed Conductance Algorithm

We shall make the following modification to DCB in order to improve its

performance. At first, VMs are sorted in ascending order inside a Datacenter using

their processing capability characteristic i.e. Millions of Instructions per Second

(MIPS).

Expected Processing Time = (MI of a Cloudlet / MIPS of VM) (1)

At second step, best VMs in terms of processing capability will be selected for a

Cloudlet in order to improve the overall performance of the system.

3.1 Cloudlet Allocation Strategies

The Cloudlets may be generated in two ways, one is automatically in a random order

with difference in all its characteristics otherwise the Cloudlets may be generated and

classify by user. The generated Cloudlets will be submitted to the Datacenter Broker

module which contains the information regarding the VMs. In our proposed Cloudlet

allocation algorithm, Conductance Algorithm tries to allocate the Cloudlets to VMs

correctly by drawing inspiration from the way water works in a pipe system. Before

start the allocation operation, the Datacenter Broker sorts the available VMs in a

5

Datacenter in ascending order according to their capacity. When a batch of Cloudlets

are submitted to the Datacenter Broker, then DCB first arrange the batch of Cloudlets

in ascending order according to their length and apply conductance algorithm on

sorted Cloudlets where the higher MIPS VMs should be allotted more percentage of

the load than the lower MIPS VMs.

3.2 Working Principle

In proposed Conductance Algorithm, consider each VM as a pipe which is shown in

figure 2. Now the basic idea is that the thicker the pipe the more water it can fit into it

i.e. the higher MIPS of a VMseems the higher conductance (processing power).

Now, we calculate the conductance (processing power) as per (2) of each VM as the

ratio of its capacity to the sum of the capacity of all the VMs present in a Datacenter.

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒𝑖 =
𝑀𝑖𝑝𝑠𝑖

∑ 𝑀𝑖𝑝𝑠𝑖
𝑁
𝑖=1

⁄ (2)

After the calculation of the Conductance, multiply the Conductance of that particular

VM with the length of the cloudlet list. To determine the strip length as per (3) of the

cloudlet list the VM can process (Conduct). That is to determine the part of the

Cloudlet list the VM can acquire i.e. the no. of Cloudlets the VM can process. Pseudo

code of proposed Conductance Algorithm is given in algorithm 1.

𝑠𝑡𝑟𝑖𝑝𝐿𝑒𝑛𝑔𝑡ℎ𝑖 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒𝑖 ∗ (𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡 𝑙𝑖𝑠𝑡) (3)

Algorithm 1: Pseudo Code of Conductance Algorithm

Sort: Cloudlet list in decreasing order of their length

Sort: vmList in decreasing order of their MIPS

Declare totalMIPS

Let totalMIPS = 0

 For each vm in vmList begin

 totalMips += vm.getMips()

 end

Declare conductance, length

Let length = cloudletList.size ()

Declare from

Let from = cloudletList.size() - 1;

 For each vm in vmList begin

 conductance = vm.getMips()/totalMips;

 Let range = roundOff(conductance*length);

 while(range-- > 0 AND from > 0)

 Bind the cloudlet having id as form to vm

 end

6

Done

Fig. 2. Pictorial representations of VMs as a Pipe

3.3 Demonstration of Conductance Algorithm

For simplicity and better explanation, we have six Cloudlets, a single Datacenter and

three VMs. The Cloudlets are assigned to the VM with the help of proposed

Conductance Algorithm. The sorted VMs with their capacity are shown in figure 2. A

batch of six Cloudlets with their length in Million Instructions (MI) is shown in figure

3.

Fig. 3. Batch of Cloudlets with length [All Lengths are in MI (Million Instructions)]

Cloudlets are sorted in ascending order and Conductance of the three VMs are

computed using (2) in the Datacenter is shown in figure 4.

7

Fig. 4. Conductance calculation of the VMs

Finally, strip lengths of the VMs are computed using (3) and sorted Cloudlets are

allocated to the proper VM in the Datacenter according to the strip value as shown in

figure 5.where length of Cloudlet list is 6.

From figure 5, it may be observe that VMs whose MIPS is maximum, is allocated

to more Cloudlets compare to the VMs who’s MIPS is small. As shown in figure 5,

VM whose MIPS is 5, is allocated to 3 highest length Cloudlets. Similarly, VM,

whose capacity is 3, is allocated to next two highest capacities Cloudlet. Finally the

VN, whose capacity is 1, is allocated to smallest length Cloudlet from the list.

Therefore, our proposed Conductance algorithm substantially improves the execution

time of the Cloudlets as well as improves the makespan [15] of overall system.

Fig. 5. Strip calculation of the VMs

8

3.4 Limitations of Conductance Algorithm

• It does not perform better than the existing Datacenter Broker Policy if the MIPS

of the VMs of a Datacenter are all equal and if numbers of Cloudlets much less

than numbers of VMs.

• The low MIPS VMs sometimes get free too quickly thus wasting its resources.

• The high MIPS VMs sometimes get overloaded when the Length of the longest

Cloudlets assigned to them are very large.

• The accuracy of the number of Cloudlets assigned to VMs depends on the

rounding off algorithm and if naive rounding algorithms are used then it will

result in incorrect assignments.

4 Comparison and Simulated Result

The simulated comparison result of 20 Cloudlets and 4 VMs are shown in figures 6

and 7. The makespan of individual VMs of two different Cloudlet allocation policies

are shown in figure 6 where x-axis denotes the VM IDs and the y-axis denotes the

makespan of the VMs. From figure 6, it is clear that the makespan of VM0 and VM2

using Conductance algorithm are significantly better (smaller is better) than existing

DCB, but the makespan of VM1 and VM3 are insignificantly little poor.

Fig. 6. Simulated comparison result of two different Cloudlet allocations Policies

Overall makespan of the system using existing Datacenter allocation Policy is 223.

Whereas, overall makespan of the system using Conductance Algorithm is 76.8.

Figure 7 illustrates comparison between aforementioned allocation policies in terms

of execution time where, x axis indicates Cloudlet IDs while y axis indicate execution

time. From figure 7, it may easily be concluded that the execution time of the

cloudlets are significantly improved using the proposed Conductance algorithm.

Therefore, we may conclude that, Conductance algorithm performs substantially

better than existing DCB allocation policy.

0

50

100

150

200

250

VM0 VM1 VM2 VM3

m
ak

es
p

an

Virtual Machines

exsisting Datacenter
Broker Policy

Conductance
Algorithm

9

Fig. 7. Simulated comparison result of two different Cloudlet allocations Policies

5 Conclusion and Future Work

Our study encompasses discussed on Cloudlet allocation to the different VMs inside a

Datacenter with the help the Conductance algorithm which provides better makespan

of the VMs in the Datacenter and the execution time of the Cloudlets also reduced.

Hence the QoS and the resource utilization of overall system must be improved. In

our future study, we shall focus on development of DCB module using intelligent

algorithms to identify loads intelligently for the entire available VMs inside a

Datacenter and keep all the VMs busy as much as possible so that makespan of whole

system would improve. The capacity of the VMs will be indexed in a hash table so

that information regarding the execution load of all VMs are dynamically updated.

We shall also investigate live VM migration to the other host inside a Datacenter with

the help of the ‘Vmotion’ Distributed Service [13] in the Cloud environment.

Acknowledgment

….

References

1. KaiqiXiong, Harry Perros“Service Performance and Analysis in Cloud Computing” 978-0-

7695- 3708-5/09 $25.00 © 2009 IEEE page- 693-700.

2. Borja Sotomayor, Rubén S. Montero and Ignacio M. Llorente, Ian Foster “Virtual

Infrastructure Management in Private and Hybrid Clouds” 1089-7801/09/$26.00 © 2009

IEEE.

3. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, M. Zaharia “A Berkeley View of Cloud computing” Technical Report

No. UCB/EECS-2009-28, University of California at Berkley, USA, Feb. 10, 2009.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

Ex
ec

u
ti

o
n

ti
m

e

Cloudlets

exsisting Datacenter
Broker Policy

Conductance
Algorithm

10

4. Francesco Maria Aymerich, Gianni Fenu1, Simone Surcis “An Approach to a Cloud

Computing Network” 978-1-4244-2624- 9/08/$25.00 ©2008 IEEE 113 page 113-118.

5. Xu Lei, XinZhe, Ma Shaowu, Tang Xiongyan “Cloud Computing and Services Platform

Construction of Telecom Operator” Broadband Network & Multimedia Technology, 2009.

IC-BNMT '09. 2nd IEEE International Conference on Digital Object Identifier, pp. 864 –

867.

6. MainakAdhikari, Sourav Banerjee, Utpal Biswas “Smart Task Assignment Model for

Cloud Service Provider” Special Issue of International Journal of Computer Applications

(0975 – 8887) on Advanced Computing and Communication Technologies for HPC

Applications - ACCTHPCA, June 2012.

7. RajkumarBuyya, Rajiv Ranjan, Rodrigo N. Calheiro “Modeling and Simulation of scalable

Cloud Computing Environments and the CloudSim Toolkit: Challenges and

Opportunities”.

8. Saeed Parsa and Reza Entezari-Maleki , "RASA: A New Grid Task Scheduling

Algorithm", International Journal of Digital Content Technology and its Applications, Vol.

3, pp. 91-99, 2009.

9. P. Brucker, “Scheduling Algorithms”, Fifth Edition, Springer Press, 2007.

10. D.I. George Amalarethinam and P. Muthulakshmi, "An Overview of the scheduling

policies and algorithms in Grid Computing ", International Journal of Research and

Reviews in Computer Science, Vol. 2, No. 2, pp. 280-294, 2011

11. El-Sayed T. El-kenawy, Ali Ibraheem El-Desoky, Mohamed F. Al-rahamawy, “Extended

Max-Min Scheduling Using Petri Net and Load Balancing”, International Journal of Soft

Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-4, September

2012.

12. L. Mohammad Khanli, and M. Analoui, "Resource Scheduling in Desktop Grid by Grid-

JQA," The 3rd International Conference on Grid and Pervasive Computing, IEEE, 2008.

13. White Paper- VMware Infrastructure Architecture Overview, VMware.

14. Jaehyung Yang, AshfaqKhokhar, SohailSheikht, ArifGhafoor "Estimating Execution

Time For Parallel Tasks in Heterogeneous Processing (HP) Environment", 0-8186-5592-

5194 $3.00 Q 1994 IEEE

15. D.I. George Amalarethinam, F.KurusMalaiSelvi, “A Minimum Makespan Grid Workflow

Scheduling Algorithm”, 978-1-4577-1583-9/ 12/ $26.00 © 2012 IEEE

16. Ghalem, B., Fatima Zohra, T., and Wieme, Z. “Approaches to Improve the Resources

Management in the Simulator CloudSim” in ICICA 2010, LNCS 6377, DOI: 10.1007/978-

3-642-16167-4_25, pp. 189–196, 2010.

17. Bhatia, W., Buyya, R., Ranjan, R., “CloudAnalyst: A CloudSimbased Visual Modeller for

Analysing Cloud Computing Environments and Applications” in 2010 24th IEEE

International Conference on Advanced Information Networking and Applications, pp.446-

452, 2010.

18. Rodrigo N. Calheiros, RajivRanjan, Cesar A. F. De Rose, and RajkumarBuyya,

“CloudSim: A Novel Framework for modelling and Simulation of Cloud Computing

Infrastructures and Services”, 2009.

19. Calheiros, R.N., Ranjan, R., De Rose, C.A.F., Buyya, R., “ CloudSim: A Novel

Framework for Modeling and Simulation of Cloud Computing Infrastructures and

Services” in Technical Report, GRIDS-TR-2009-1, Grid Computing and Distributed

Systems Laboratory, The University of Melbourne, Australia, 2009.

	1 Introduction
	2 Cloudsim Toolkits
	3 Proposed Conductance Algorithm
	3.1 Cloudlet Allocation Strategies
	3.2 Working Principle
	3.3 Demonstration of Conductance Algorithm
	3.4 Limitations of Conductance Algorithm

	4 Comparison and Simulated Result
	5 Conclusion and Future Work
	Acknowledgment
	References

