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Abstract. A suitable regression model for predicting the dissolution
profile of Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles
can play a significant role in pharmaceutical/medical applications. The
rate of dissolution of proteins is influenced by several factors and taking
all such influencing factors into account, we have a dataset in hand with
three hundred input features. Therefore, a primary approach before iden-
tifying a regression model is to reduce the dimensionality of the dataset
at hand. On the one hand, we have adopted Backward Elimination Fea-
ture selection techniques for an exhaustive analysis of the predictability
of each combination of features. On the other hand, several linear and
non-linear feature extraction methods are used in order to extract a new
set of features out of the available dataset. A comprehensive experimen-
tal analysis for the selection or extraction of features and identification
of corresponding prediction model is offered. The designed experiment
and prediction models offers substantially better performance over the
earlier proposed prediction models in literature for the said problem.

Keywords: Dimension reduction, Feature selection, Feature extraction,
Regression, PLGA

1 Introduction

Predicting dissolution profile of Poly (lactic-co-glycolic acid) (PLGA) micro and
nanoparticles is a complex problem as there are several potential factors influ-
encing dissolution of PLGA protein particles [1]. Collecting all such influencing
factors leads to three hundred input features in dataset. Therefore, primary
approach one may adopt is the reduction of dimensionality of dataset. Dimen-
sionality reduction techniques transform a high dimension dataset to a low di-
mension datasets thereby, improving models computational speed, predictability
and generalization ability. Dimensionality reduction may be categorised in two
paradigms, feature selection and feature extraction. The former is useful when
a dataset is available with high dimension and fewer cases (samples), while fea-
ture extraction is useful when a dataset has an extremely large dimension and
high redundancy. In present problem, we shall explore both feature selection
and feature extraction techniques to find out best possible solution. To figure



out relationship between obtained input variables (features) and output variable,
several regression models are employed. We shall analyse prediction models to
obtain a suitable prediction model for the said problem.

In present scope of the study, we focus on the PLGA nano- or microspheres
dissolution properties and drug release. Szlkeket et al. [2] and Fredenberg et al.
[3] described that the drug release from the PLGA matrix is mainly governed
by two mechanisms, diffusion and degradation/erosion. Several factors influenc-
ing the diffusion and degradation rate of PLGA described by Kang et al. [4, 5],
Blanco and Alonso [6] and Mainardes et al. [7] are pore diameters, matrix ac-
tive pharmaceutical ingredient (API) interactions, API - API interactions, and
formulation composition. Szlkeket et al. [2] offered predictive model to describe
underlying relationship of those influencing factors on the drug release profile,
where they focus on the feature selection, artificial neural network and genetic
programming to obtain a suitable predicting model for the said purpose. In past,
several mathematical models including Monte Carlo and cellular automata mi-
croscopic models were proposed by Zygourakis and Markenscoff [8] and Gpferich
[9]. A partial differential equations model was proposed by Siepmann et al [10]
to address the influence of underlying PLGA properties on the drug release rate
or protein dissolution.

We shall discuss the PLGA drug release problem and dataset collection mech-
anisms in section 2.1. In section 2.2, we shall discus the computational tools
available for dimensionality reduction and prediction. A comprehensive discus-
sion on the experimental setup is offered in section 3. Finally, we shall conclude
our discussion in section 4.

2 Methodology

2.1 Problem Description

Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles could play signif-
icant role in medical application and toxicity evaluation of PLGA-based multi-
particulate dosage form. Poly (lactic-co-glycolic acid) (PLGA) microparticles are
important diluents in the formulation of drugs in the dosage form. Apart from
playing a role as a filler, PLGA as an excipient, and alongside pharmaceutical
active ingredients (APIs) plays crucial role in various ways. It helps dissolution
of the drugs, thus increases absorbability and solubility of drugs. It helps in
pharmaceutical manufacturing process by improving APIs powder’s flowability
and nonstickiness. Nonetheless, it helps in vitro stability such as prevention of
denaturation over expected shelf life.

Present study is performed on the dataset offered by Szlkeket et al. [2] in
their article “Heuristic modeling of macromolecule release from PLGA micro-
spheres”. Dataset collected from various literature by Szlkeket et al. [2] has
three hundred input features divided into four groups, namely protein descriptor,
plasticizer, formulation characteristics, and emulsifier. Formulation characteris-
tics group contains features such as PLGA inherent viscosity, PLGA molecular



weight, lactide-to-glycolide ratio, inner and outer phase Polyvinyl alcohol (PVA)
concentration, PVA molecular weight, inner phase volume, encapsulation rate,
mean particle size, and PLGA concentration and experimental condition (dis-
solution pH, number of dissolution additives, dissolution additive concentration
and production method, and dissolution time). Feature groups protein descrip-
tor, plasticizer and emulsifier contains 85, 98 and 101 features respectively. The
regression model sought to predict dissolution percentage or solubility of PLGA
which depends on the features mentioned above. In order to avoid overfitting,
collected data are preprocessed by adding noise to them. Dataset is then nor-
malized in the range [-1.0, 1.0].

2.2 Dimensionality Reduction tools

Feature Selection (Backward Elimination) Feature selection techniques
enable us to choose from the set of input features we have in our hand. Especially,
feature selection become significant step towards development of a predication
model where it requires expensive (both in time and cost) experimental exami-
nation. Backward Feature Elimination Filter provided in open-source platform
KNIME1 is used for feature elimination. The basic methodology and principle
behind backward elimination filter is to start from the maximum number fea-
ture in hand (in this case it starts with three hundred features) and to search
all possible combinations of the features in order to eliminate (marked) poorest
feature in terms of its predictability in the set of all features. Moreover, the fea-
ture with the worst performance in terms of error as obtained by the regression
model used is eliminated. In subsequent iteration the operation repeated for the
remaining features and so on.

Feature Extraction When it is affordable to generate test features easily, fea-
ture extraction technique may be useful to employ for dimensionality reduction.
A regression model with reduced input dimension may performs as good as it
can with a complete set of features. [11]. Therefore, feature extraction for di-
mensionality helps is reducing computational overhead which may incurred due
to use of complete input dimension.

Principle Component Analysis (PCA): PCA is linear dimensionality reduc-
tion technique which transforms correlated data into uncorrelated data in the
reduced dimension by the means of finding a linear basis of reduced dimension-
ality for the data, in which the amount of variance in the data is maximal.

Factor Analysis: Linear dimension reduction technique, Factor Analysis, as
opposed to PCA, finds whether a number of features of interest are linearly
related to small/reduced number of newly defined features called factors. In other
words, it discovers reduced number of relatively independent features through
the means of mapping correlated features to small set of features known as
factors.

1 KNIME - Professional Open-Source Software of KNIME.com AG



Independent Component Analysis (ICA): Similar to FA, ICA proposed by
Hyvarinen et al. [12, 13] is a linear dimension reduction technique that trans-
forms multidimensional feature vector into components that are statistically as
independent as possible.

Kernel PCA (kPCA): Kernel PCA, a non-linear technique of dimension re-
duction, is an extension of PCA using kernel methods. Kernel PCA computes
the principal eigenvectors of the kernel matrix, rather than those of the co-
variance matrix. The reformulation of PCA in kernel space is straightforward,
since a kernel matrix is similar to the inner product of the data points in the
high dimensional space that is constructed using the kernel function. Typically,
Gaussian, Tangent hyperbolic, Polynomial, etc. functions are used as kernel.

Multidimensional Scaling (MDS): MDS is a non-linear dimension reduction
technique, maps the high dimensional data representation to a low-dimensional
representation while retaining the pairwise distances between the data points as
much as possible.

2.3 Prediction Models

Regression/Prediction model tries to figure out the relationship between inde-
pendent variable (input variables X) and dependent variables (output variable
y). Moreover, it tries to find unknown parameters (β) such that error (2) is min-
imized given that dependent variable y, independent variable X and predicted
output ŷ

y = f(X,β) (1)

Let ei = (ŷi − yi) be the difference between the values of the true value of the
dependent variable yi and predicted value ŷi. Therefore, sum of square error ξ
over data samples of size n.

ξ =

n∑
i=1

e2i (2)

Linear Regression (LReg) Linear regression is the simplest predictive model
where p independent variables (|X| = n × p), dependent variable yi with noise
εi may be written as (3).

yi = β1xi1 + β2xi2 + . . .+ βpxip+ εi = xT
i .β + εi (3)

where εi is called noise or error variable.

Gaussian Process Regression (GPreg) Rasmussen [14, 15]. A Gaussian
process is fully specified by its mean function m(x) and covariance function
k(x, x′). This is a natural generalization of the Gaussian distribution whose
mean m and covariance k is a vector and matrix respectively. The Gaussian
distribution is over vectors, whereas the Gaussian process is over functions f .
We may write.

f ∼ GP(m, k) (4)



Multilayer Perceptron (MLP) Multilayer perceptron (MLP) is a feedfor-
ward neural network having one or more hidden layers in between input and
output layers [16, 17]. A neuron in an MLP first computes linear weighted com-
bination of real valued inputs and then limits its amplitude using an non-linear
activation function. In present case, MLP is trained using Backpropagation al-
gorithm propounded by Rumelhart et a. [18] and Resilient propagator (RProp)
developed by Riedmiller et al. [19].

Sequential Minimal Optimization Regression (SMOReg) Sequential min-
imal optimization (SMO), an algorithm for the training of Support Vector Re-
gression (SVR), proposed by Smola and Schlkopf [20, 21, 22] was an extension
of the SMO algorithm proposed by Platt [23] for SVM classifier. SVR attempts
to minimize the generalization error bound so as to achieve generalized per-
formance. The idea of SVR is based on the computation of a linear regression
function in a high dimensional feature space where the input data are mapped
via a non-linear function.

3 Experimental Setup and Results

Experimental setup for the dimensionality reduction and identification of corre-
sponding regression model for the prediction of protein molecules is as follows.
The experiment is conducted using MATLAB2, KNIME and WEKA3. As men-
tioned in section 2, dataset obtained for the PLGA dissolution profile has three
hundred features, therefore the primary objective is to reduce the dimension
of the dataset. Feature selection and feature extraction discussed in section 2.2
are used for the dimensionality reduction. Subsequent to dimension reduction,
predication models are employed and assessed using 10 cross-validation (10cv)
sets prepared after dimension reduction. Selection of prediction model is based
on the average and variance computed over a set of 10 Root Mean Square Errors
(RMSE) obtained as result of 10cv experiment. A pictorial illustration of the
experiment is shown in figure 1.

3.1 Experimental results of feature selection technique

After cleaning and preprocessing dataset, it goes under backward elimination
treatment, where we have a set of prediction models such as GP regression with
RBF kernel, LReg, three-layer MLP with fifty neurons at the hidden layer, learn-
ing rate 0.3, momentum rate 0.2 and SMOReg with polynomial kernel, epsilon
value 0.001 and tolerance label 0.001. As a result of backward elimination pro-
cess, each of the regression model ends with a list containing all combinations of
the features starting from a single selected feature to two hundred ninety-nine

2 MATLAB is trademark of MathWorks, Inc.
3 WEKA - Data Mining Software in Java developed by machine learning group at the

University of Waikato, Free Software Foundation, Inc.
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Fig. 1. Experimental setup for the identification of the dimensionality reduction and
selection prediction model for the prediction of PLGA dissolution profile.

features and their corresponding mean sum square error. Therefore, the combi-
nation which offer least value of mean square error is termed as an optimal set
of features for the corresponding regression model. For example, the optimal set
of features obtained for regression models GPReg, LReg, MLP and SMOReg are
18, 32, 31 and 30 with mean square error (result of normalized dataset) 0.143,
0.156, 0.121, and 0.153 respectively. From 10cv experimental result presented in
Table 1 and Figure 2, it is evident that considering the entire features SMOReg
performs better in terms of Mean of RMSEs and Variance followed by GPReg
and MLP. Whereas, in case of optimal features selection, GPReg performs better
than the rest of the regression models, it also performs better than the perfor-
mance of SMOReg model which performs best while considering all features.
MLP is only next to GPReg in terms of RMSE when it comes to section of
10 features or optimal features. Examining Figure 2, it is evident that GPReg
performs better in terms of both average RMSE and variance (VAR). Whereas,
performance of SMOreg is only next to GPReg in terms of average RMSE. On
the other hand MLP performs slightly poorer than SMOReg and LReg in terms
of average RMSE. We may therefore conclude that GPReg offers best solution
to the current problem. GPReg offers 17 and 10 selected features. However, the
difference between average RMSE is insignificant. Therefore, we may conclude
that the optimal reduced feature for the present problem may be considered as
10. The result of backward elimination filter 10 features are as follows. From
the protein descriptor group, we have Aliphatic ring count, van der Waals vol-
ume and quaternary structure, from the formulation characteristics group, we
have PLGA viscosity, PVA concentration inner phase, Mean particle size, and
PLGA to Placticizer, from the Plasticizer group, we have pH7-msdon and from
the Emulsifier group, we have Wiener index and dissolution time in days. Nev-



Table 1. Experimental results for 10cv datasets prepared with distinct random par-
titions of the complete dataset using feature selection technique (Identification of re-
gression model) Note. Mean and variance (VAR) is computed on 10 RMSE obtained.

Regression Reduced Number of Features
Model 1 5 10 Optimal 300

Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR

GPReg 27.474 10.942 17.107 3.989 15.322 3.782 15.709 3.162 16.812 3.551
LReg 26.613 3.232 23.447 3.702 19.979 3.402 17.847 1.634 17.074 2.738
MLP 28.329 7.428 23.113 10.007 20.997 11.365 17.820 8.095 18.571 21.063
SMOReg 26.970 3.307 23.381 2.729 19.526 3.757 17.885 3.321 16.529 2.554
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Fig. 2. Experimental results of feature selection, comparison between the regression
models. (a) comparison using average RMSE (b) comparison using variance.

ertheless, it is worth mentioning that the best result presented by Szlkeket al.
[2] is root mean square error (RMSE) of 15.4 considering 11 selected features
using MLP and 17 features with RMSE of 14.3 using MLP. The process of the
presented feature selection was able to find the most significant features influenc-
ing drug release rate. It may be observed that features vectors from the all four
mentioned feature groups are among the selected features. Therefore, a general
theory may be drawn about how features dominate PLGA drug release rate.

3.2 Experimental results of feature extraction technique

Unlike feature selection, feature extraction finds new set of reduced feature
by computing linear or non-linear combinations of features from the available
dataset. As described in section 2.2, various feature extraction techniques may
be used for the said purpose. A comprehensive result is presented in Table 2
illustrating performance of feature extraction methods and regression models.
Dimensionality reduction tools offered by van der Maaten et al. [11] are used for
the feature extraction. Linear dimensionality reduction methods, PCA and FA
and non-linear dimensionality reduction methods such as kPCA and MDS are
used to reduce dimension of dataset from 300 to 50 , 30 , 20, 10 and 5. Whereas,
ICA is used to reduced dimension of dataset from 300 to 50. Results obtained
using ICA are as follows. Mean RMSE and variance corresponding to GPReg,
LReg, MLP and SMOReg are 14.83, 17.23, 13.94, and 17.92 and 3.61, 2.34,



Table 2. Experimental results for 10cv datasets prepared with distinct random par-
titions of the complete dataset using feature extraction techniques Note. Mean and
variance (VAR) is computed on 10 RMSE obtained.

Feature Regression Reduced Dimension
Extraction Model 1 5 10 20 30

Method Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR

L
in

ea
r

M
et

h
o
d

PCA

GPReg 28.88 1.62 27.22 3.00 24.80 3.85 19.82 2.49 16.08 3.16
LReg 29.55 1.74 29.22 1.70 27.73 2.21 23.93 1.63 17.17 2.79
MLP 30.36 3.36 29.77 6.37 26.58 3.98 19.89 2.27 13.59 1.56
SMOReg 30.14 3.17 29.78 3.62 27.95 2.67 24.31 1.89 17.66 3.09

FA

GPReg 29.23 1.77 28.56 2.67 28.31 3.34 28.30 3.42 28.26 3.31
LReg 29.97 1.77 29.97 1.77 29.97 1.77 29.97 1.77 29.98 1.82
MLP 30.64 2.02 30.50 1.91 31.01 1.83 30.93 2.30 30.91 0.77
SMOReg 30.28 3.45 30.28 3.45 30.26 3.37 30.29 3.44 30.28 3.46

N
o
n
-l

in
ea

r
M

et
h
o
d

Kernel
PCA

GPReg 28.60 1.68 27.08 2.12 24.96 1.96 24.32 2.17 22.81 4.43
LReg 29.31 1.52 28.05 1.78 25.35 2.05 25.17 2.23 22.98 4.27
MLP 29.81 3.57 29.65 7.94 27.07 4.09 25.97 5.52 25.27 8.49
SMOReg 29.43 1.41 28.68 1.65 25.90 1.70 25.79 2.00 23.24 4.76

MDS

GPReg 28.91 2.17 28.73 2.47 28.41 3.16 28.24 3.17 28.16 3.27
LReg 29.56 1.86 29.21 2.08 29.19 2.08 29.11 1.92 29.14 2.04
MLP 30.42 3.71 29.38 4.11 29.93 3.10 30.01 4.53 29.98 4.42
SMOReg 29.98 2.62 29.64 2.55 29.64 2.76 29.66 2.85 29.65 2.89

2.77, and 2.87 respectively. It may be observed from Table 2 that lower dimen-
sions offers less significance improvement to results in terms of RMSE. However,
if we compare the best result (result of reduced dimension to 50) of PCA (RMSE
13.59 corresponding MLP) and ICA (RMSE 13.94 corresponding to MLP) with
the result with all features (RMSE 16.812 corresponding to GPReg), it is evi-
dent that reduction in dimension significantly improves the performance of the
prediction model. Examining Figure 3, a RMSE and variance (VAR) comparison
between chosen regression model applied on dataset reduced to dimension 50 by
feature extraction techniques ICA, PCA, FA, kPCA and MDS, we may conclude
that feature extraction using PCA performs best, both in terms of RMSE and
VAR when regression model MLP is used, whereas, feature extraction using ICA
performers only next to PCA when MLP is used, when it comes to GPReg, ICA
has an edge over PCA result.

4 Conclusion

The challenge of predicting a protein molecules dissolution profile is due to the
large number of input features available where each of the input features may
potentially be an influencing factor affecting dissolution of proteins. Therefore,
predicting the rate of dissolution is a complex problem. Hence, on the one hand
we have adopted feature selection technique, which lets us select most influencing
features among the available features without worsen performance. On the other
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Fig. 3. Experimental results of feature extraction with reduced dimension 30, compari-
son between the regression models. (a) comparison using average RMSE (b) comparison
using variance.

hand we have features extraction techniques which let us consider the entire
available feature, but provide a reduced set of new features which performs better
than when considering all the features together. In order to identify regression
models, we have analysed the performance of GPReg, LReg, MLP and SMOReg.
As a result of comprehensive evaluation of the aforementioned experiments, we
may conclude that GPReg performs best when it comes to feature selection where
it select 10 features and offer lowest average RMSE and VAR. We may observe
from the experiment of feature extraction that PCA used to reduce dimension
to 50 offered best result using MLP with lowest average RMSE and VAR. From
the aforementioned experiment and results, a general model for understanding
PLGA drug release rate may be obtained for various medical and pharmaceutical
applications.
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