Skip to main content

Identifying Spurious Interactions in the Protein-Protein Interaction Networks Using Local Similarity Preserving Embedding

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

Abstract

Over the last decade, the development of high-throughput techniques has resulted in a rapid accumulation of protein-protein interaction (PPI) data. However, the high-throughput experimental interaction data is prone to exhibit high level of noise. In this paper, we propose a new approach called Local Similarity Preserving Embedding(LSPE) for assessing the reliability of interactions. Unlike previous approaches which seek to preserve a global predefined distance matrix in the embedding space, LSPE tries to adaptively and locally learn a Euclidean embedding under the simple geometric assumption of PPI networks. The experimental results show that our approach substantially outperforms previous methods on PPI assessment problems. LSPE could thus facilitate further graph-based studies of PPIs and may help infer their hidden underlying biological knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ito, T., Chiba, T., Ozawa, R., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America 98, 4569–4574 (2001)

    Article  Google Scholar 

  2. Krogan, N.J., Cagney, G., Yu, H.Y., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  3. Gavin, A.C., Bosche, M., Krause, R., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  4. Ho, Y., Gruhler, A., Heilbut, A., et al.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

  5. Uetz, P., Giot, L., Cagney, G., et al.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  6. Giot, L., Bader, J.S., Brouwer, C., et al.: A protein interaction map of drosophila melanogaster. Science 302, 1727–1736 (2003)

    Article  Google Scholar 

  7. Morrison, J.L., Breitling, R., Higham, D.J., et al.: A lock-and-key model for protein-protein interactions. Bioinformatics 22, 2012–2019 (2006)

    Article  Google Scholar 

  8. Lappe, M., Holm, L.: Unraveling protein interaction networks with near-optimal efficiency. Nature Biotechnology 22, 98–103 (2004)

    Article  Google Scholar 

  9. Edwards, A.M., Kus, B., Jansen, R., et al.: Bridging structural biology and genomics: assessing protein interaction data with known complexes. TRENDS in Genetics 18, 529–536 (2002)

    Article  Google Scholar 

  10. Albert, I., Albert, R.: Conserved network motifs allow protein–protein interaction prediction. Bioinformatics 20, 3346–3352 (2004)

    Article  Google Scholar 

  11. Deng, M., Zhang, K., Mehta, S., et al.: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology 10, 947–960 (2003)

    Article  Google Scholar 

  12. Liu, G., Li, J., Wong, L.: Assessing and predicting protein interactions using both local and global network topological metrics. Genome Informatics 22, 138–149 (2008)

    Article  Google Scholar 

  13. Saito, R., Suzuki, H., Hayashizaki, Y.: Interaction generality, a measurement to assess the reliability of a protein–protein interaction. Nucleic Acids Research 30, 1163–1168 (2002)

    Article  Google Scholar 

  14. Saito, R., Suzuki, H., Hayashizaki, Y.: Construction of reliable protein–protein interaction networks with a new interaction generality measure. Bioinformatics 19, 756–763 (2003)

    Article  Google Scholar 

  15. Chen, J., Hsu, W., Lee, M.L., et al.: Discovering reliable protein interactions from high-throughput experimental data using network topology. Artificial Intelligence in Medicine 35, 37–47 (2005)

    Article  Google Scholar 

  16. Brun, C., Chevenet, F., Martin, D., et al.: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology 5, 6 (2003)

    Article  Google Scholar 

  17. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  18. Chua, H.N., Wong, L.: Increasing the reliability of protein interactomes. Drug Discovery Today 13, 652–658 (2008)

    Article  Google Scholar 

  19. Kuchaiev, O., Rasajski, M., Higham, D.J., et al.: Geometric de-noising of protein-protein interaction networks. Plos Computational Biology 5, e1000454 (2009)

    Google Scholar 

  20. You, Z.H., Lei, Y.K., Gui, J., et al.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26, 2744–2751 (2010)

    Article  Google Scholar 

  21. Fang, Y., Benjamin, W., Sun, M.T., et al.: Global geometric affinity for revealing high fidelity protein interaction network. Plos One 6, e19349 (2011)

    Google Scholar 

  22. Zhu, Y., Zhang, X.-F., Dai, D.-Q., et al.: Identifying Spurious Interactions and Predicting Missing Interactions in the Protein-Protein Interaction Networks via a Generative Network Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10, 219–225 (2013)

    Article  Google Scholar 

  23. Lei, C., Ruan, J.: A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity. Bioinformatics 29, 355–364 (2013)

    Article  Google Scholar 

  24. Fouss, F., Pirotte, A., Renders, J.M., et al.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19, 355–369 (2007)

    Article  Google Scholar 

  25. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20, 3508–3515 (2004)

    Article  Google Scholar 

  26. Milenkovic, T., Lai, J., Przulj, N.: Graphcrunch: a tool for large network analyses. BMC Bioinformatics 9, 70 (2008)

    Article  Google Scholar 

  27. Higham, D.J., Rasajski, M., Przulji, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24, 1093–1099 (2008)

    Article  Google Scholar 

  28. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  29. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. ACM Transactions on Knowledge Discovery from Data (TKDD) 5, 21 (2012)

    Article  Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer (2006)

    Google Scholar 

  31. Tong, A.H.Y., Lesage, G., Bader, G.D., et al.: Global mapping of the yeast genetic interaction network. Science’s STKE 303, 808 (2004)

    Google Scholar 

  32. Xenarios, I., Rice, D.W., Salwinski, L., et al.: DIP: the database of interacting proteins. Nucleic Acids Research 28, 289–291 (2000)

    Article  Google Scholar 

  33. Oliver, S.: Guilt-by-association goes global. Nature 403, 601–603 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, L., You, ZH., Huang, DS. (2014). Identifying Spurious Interactions in the Protein-Protein Interaction Networks Using Local Similarity Preserving Embedding. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics