Skip to main content

Structure-Based Analysis of Protein Binding Pockets Using Von Neumann Entropy

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

Abstract

Protein binding sites are regions where interactions between a protein and ligand take place. Identification of binding sites is a functional issue especially in structure-based drug design. This paper aims to present a novel feature of protein binding pockets based on the complexity of corresponding weighted Delaunay triangulation. The results demonstrate that candidate binding pockets obtain less relative Von Neumann entropy which means more random scattering of voids inside them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seco, J., Luque, J., Barril, X.: Binding Site Detection and Druggability Index from First Principles. Journal of Medicinal Chemistry 52, 2363–2371 (2009)

    Article  Google Scholar 

  2. Pérot, S., Sperandio, O., Miteva, M.A., Camproux, A., Villoutreix, B.O.: Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discovery Today 15, 656–667 (2010)

    Article  Google Scholar 

  3. Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 15, 359–363 (1997)

    Article  Google Scholar 

  4. Huang, B., Schroeder, M.: LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Structural Biology 6, 19–29 (2006)

    Article  Google Scholar 

  5. Weisel, M., Proschak, E., Schneider, G.: PocketPicker: analysis of ligand binding-sites with shape descriptors. Chemistry Central Journal 1 (2007)

    Google Scholar 

  6. Laskowsk, R.A.: SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13, 323–330, 307–308 (1995)

    Google Scholar 

  7. Brady, G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14, 383–401 (2000)

    Article  Google Scholar 

  8. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Descrete Applied Mathematics 88, 83–102 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Le Guilloux, V., Schmidtke, P., Tuffery, P.: Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10 (2009)

    Google Scholar 

  10. Haung, B.: MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13, 325–330 (2009)

    Article  Google Scholar 

  11. Zhang, Z., Li, Y., Lin, B., Schroeder, M., Huang, B.: Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27, 2083–2088 (2011)

    Article  Google Scholar 

  12. Laskowski, R.A., Luscombe, N.M., Swindless, M.B., Thornton, J.M.: Protein clefts in molecular recognition and function. Protein Science 5, 2438–2452 (1996)

    Google Scholar 

  13. Gao, J., Liu, Q., Kang, H., Cao, Z., Zhu, R.: Comparison of Different Ranking Methods in Protein-Ligand Binding Site Prediction. International Journal of Molecular Science 13, 8752–8761 (2012)

    Article  Google Scholar 

  14. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 (2006)

    Google Scholar 

  15. Dehmer, M., Barbarini, N., Varmuza, K., Graber, A.: A large scale analysis of information-theoretic network complexity measures using chemical structures. PLoS One 4, e8057 (2009)

    Google Scholar 

  16. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Information Science 181, 57–78 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Passerini, F., Severini, S.: Quantifying complexity in networks: The Von Neumann entropy. IJATS 4, 58–67 (2009)

    Google Scholar 

  18. Du, W., Li, X., Li, Y., Severini, S.: A note on the von Neumann entropy of random graphs. Linear Algebra and its Application (2010)

    Google Scholar 

  19. Dai, T., Liu, Q., Gao, J., Cao, Z., Zhu, R.: A new protein-ligand binding sites prediction method based on the integration of protein sequence conservation information. BMC Bioinformatics 12(suppl. 14), S9 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Forouzesh, N., Kazemi, M.R., Mohades, A. (2014). Structure-Based Analysis of Protein Binding Pockets Using Von Neumann Entropy. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics