Skip to main content

Conformational Transitions and Principal Geodesic Analysis on the Positive Semidefinite Matrix Manifold

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

Abstract

Given an initial and final protein conformation, generating the intermediate conformations provides important insight into the protein’s dynamics. We represent a protein conformation by its Gram matrix, which is a point on the rank 3 positive semidefinite matrix manifold, and show matrices along the geodesic linking an initial and final Gram matrix can be used to generate a feasible pathway for the protein’s structural change. This geodesic is based on a particular quotient geometry. If a protein is known to contain domains or groups of atoms that act as rigid clusters, facial reduction can be used to decrease the size of the Gram matrices before calculating the geodesic. The geodesic between two conformations is only one path a protein’s Gram matrix can follow; principal geodesic analysis (PGA) is one possible strategy to find other geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Alfakih, A., Khandani, A., Wolkowicz, H.: Solving euclidean distance matrix completion problems via semidefinite programming. Computational Optimization and Applications 12(1-3), 13–30 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Alipanahi, B.: New Approaches to Protein NMR Automation. Ph.D. thesis, University of Waterloo (2011)

    Google Scholar 

  4. Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein structures from noesy distance constraints by semidefinite programming. Journal of Computational Biology 20(4), 296–310 (2013)

    Article  MathSciNet  Google Scholar 

  5. Biswas, P., Toh, K.C., Ye, Y.: A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation. SIAM Journal on Scientific Computing 30(3), 1251–1277 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonnabel, S., Sepulchre, R.: Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM J. Matrix Anal. Appl. 31(3), 1055–1070 (2009), http://dx.doi.org/10.1137/080731347

    Article  MathSciNet  Google Scholar 

  7. Burkowski, F.J.: Structural Bioinformatics: An Algorithmic Approach. Chapman & Hall/CRC (2009)

    Google Scholar 

  8. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA-MMBIA 2004. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  11. Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)

    Article  Google Scholar 

  12. Goh, A.: Riemannian manifold clustering and dimensionality reduction for vision-based analysis. In: Machine Learning for Vision-Based Motion Analysis, pp. 27–53. Springer (2011)

    Google Scholar 

  13. Goh, A., Vidal, R.: Clustering and dimensionality reduction on Riemannian manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7. IEEE (2008)

    Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Journée, M., Bach, F., Absil, P.A., Sepulchre, R.: Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim. 20(5), 2327–2351 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kim, M.K.: Elastic Network Models of Biomolecular Structure and Dynamics. Ph.D. thesis, The Johns Hopkins University (2004)

    Google Scholar 

  17. Kim, M.K., Jernigan, R.L., Chirikjian, G.S.: Efficient generation of feasible pathways for protein conformational transitions. Biophysical Journal 83(3), 1620–1630 (2002)

    Article  Google Scholar 

  18. Kim, M.K., Jernigan, R.L., Chirikjian, G.S.: Rigid-cluster models of conformational transitions in macromolecular machines and assemblies. Biophysical Journal 89(1), 43–55 (2005)

    Article  Google Scholar 

  19. Kleywegt, G.J., Jones, T.A.: Phi/psi-chology: Ramachandran revisited. Structure 4, 1395–1400 (1996)

    Article  Google Scholar 

  20. Krislock, N.: Semidefinite facial reduction for Low-Rank Euclidean Distance Matrix Completion. Ph.D. thesis, School of Computer Science, University of Waterloo (2010)

    Google Scholar 

  21. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations and facial reductions. SIAM Journal on Optimization 20(5), 2679–2708 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meyer, G.: Geometric optimization algorithms for linear regression on fixed-rank matrices. Ph.D. thesis, University of Liège (2011)

    Google Scholar 

  23. Mishra, B., Meyer, G., Sepulchre, R.: Low-rank optimization for distance matrix completion. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, pp. 4455–4460 (2011)

    Google Scholar 

  24. Mishra, B., Meyer, G., Bach, F., Sepulchre, R.: Low-rank optimization with trace norm penalty. arXiv preprint arXiv:1112.2318 (2011)

    Google Scholar 

  25. Morris, A.L., MacArthur, M.W., Hutchinson, E.G., Thornton, J.M.: Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Bioinformatics 12(4), 345–364 (1992)

    Article  Google Scholar 

  26. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera–a visualization system for exploratory research and analysis. J. Comp. Chem. 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  27. Teodoro, M.L., Phillips Jr., G.N., Kavraki, L.E.: Understanding protein flexibility through dimensionality reduction. Journal of Computational Biology 10(3-4), 617–634 (2003)

    Article  Google Scholar 

  28. Vandereycken, B.: Riemannian and multilevel optimization for rank-constrained matrix problems. Ph.D. thesis, Department of Computer Science, KU Leuven (2010)

    Google Scholar 

  29. Vonrhein, C., Schlauderer, G.J., Schulz, G.E.: Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 3, 483–490 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, XB., Burkowski, F.J. (2014). Conformational Transitions and Principal Geodesic Analysis on the Positive Semidefinite Matrix Manifold. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics