Skip to main content

Dysregulated microRNA Profile in HeLa Cell Lines Induced by Lupeol

  • Conference paper
  • 2191 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Abstract

Lupeol attracted lots of research attention because of its anticancer activity. This work presents the complete microRNA profile between lupeol treated HeLa cell lines and control group, and investigates the complete small RNA sequencing data analysis process, including microRNA annotation, novel microRNA prediction, dysregulated microRNA identification and microRNA target prediction. Based on single replicate data, we applied generalized fold change (GFOLD) algorithm to detect significant regulated microRNAs. Furthermore, we adopted GOmir to predict targets of some microRNAs which have received fully attention and perform ontology analysis. The experimental results indicate that the predicted microRNAs are highly correlated with carcinogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redshaw, N., Wilkes, T., Whale, A., Cowen, S., Huggett, J., Foy, C.A.: A comparison of microRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. BioTechniques 54(3), 155–164 (2013)

    Article  Google Scholar 

  2. Mattie, M.D., Benz, C.C., Bowers, J., Sensinger, K., Wong, L., Scott, G.K., Fedele, V., Ginzinger, D., Getts, R., Haqq, C.: Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer 5, 24 (2006)

    Article  Google Scholar 

  3. Griffiths-Jones, S.: miRBase: the microRNA sequence database. Methods Mol. Biol. 342, 129–138 (2006)

    Google Scholar 

  4. Davison, T.S., Johnson, C.D., Andruss, B.F.: Analyzing micro-RNA expression using microarrays. Methods Enzymol. 411, 14–34 (2006)

    Article  Google Scholar 

  5. Cummins, J.M., He, Y., Leary, R.J., Pagliarini, R., Diaz, L.A.: The colorectal microRNAome. Proc. Natl. Acad. Sci. U. S. A. 103(10), 3687–3692 (2006)

    Article  Google Scholar 

  6. Morin, R.D., O’Connor, M.D., Griffith, M., Kuchenbauer, F., Delaney, A.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18(4), 610–621 (2008)

    Article  Google Scholar 

  7. Hesse, J.E., Liu, L., Innes, C.L., Cui, Y., Palii, S.S., Paules, R.S.: Genome-Wide Small RNA Sequencing and Gene Expression Analysis Reveals a microRNA Profile of Cancer Susceptibility in ATM-Deficient Human Mammary Epithelial Cells. PLoS One 8(5), 1–9 (2013)

    Article  Google Scholar 

  8. Li, Y., Zhang, Z., Liu, F., Vongsangnak, W., Jing, Q., Shen, B.R.: Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis. Nucleic Acids Research 40(10), 4298–4305 (2012)

    Article  Google Scholar 

  9. Liu, D.C., Dai, C.H., Xu, D.C.: Cluster analysis of microRNAs microarray data and prediction of lupeol’s anti-cancer path. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops, pp. 440–445. IEEE Press, Atlanta (2011)

    Google Scholar 

  10. Saleem, M.: Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 285, 109–115 (2009)

    Article  Google Scholar 

  11. Hackenberg, M., Sturm, M., Langenberger, D., Falcón-Pérez, J.M., Aransay, A.M.: miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 37(Web Server issue), W68–W76 (2009)

    Google Scholar 

  12. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  13. Feng, J., Meyer, C.A., Wang, Q., Liu, J.S., Shirley Liu, X., Zhang, Y.: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28(21), 2782–2788 (2012)

    Article  Google Scholar 

  14. Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome Biol. 11(10), R106 (2010)

    Google Scholar 

  15. Cai, Z., Eulenstein, O., Gibas, C.: Guest Editors Introduction to the Special Section on Bioinformatics Research and Applications. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11(2), 1–2 (2014)

    Article  Google Scholar 

  16. GOmir, http://www.bioacademy.gr/bioinformatics/projects/GOmir/

  17. TAGGO, http://www.bioacademy.gr/bioinformatics/TAGGO/

  18. Tian, Q., Liang, L., Ding, J., Zha, R., Shi, H., Wang, Q., Huang, S., Guo, W., Ge, C., Chen, T., Li, J., He, X.: MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 in hepatocellular carcinoma. PLoS One 7(11), 1–9 (2012)

    Google Scholar 

  19. Ma, Y., Yu, S., Zhao, W., Lu, Z., Chen, J.: miR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2. Cancer Lett. 298, 150–158 (2010)

    Article  Google Scholar 

  20. Zhu, H., Wu, H., Liu, X., Evans, B.R., Medina, D.J., Liu, C.G., Yang, J.M.: Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol. 76, 582–588 (2008)

    Article  Google Scholar 

  21. Li, Z., Hu, S., Wang, J., Cai, J., Xiao, L., Yu, L., Wang, Z.: MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol. Oncol. 119, 125–130 (2010)

    Article  Google Scholar 

  22. Xiang, Y., Ma, N., Wang, D., Zhang, Y., Zhou, J., Wu, G., Zhao, R., Huang, H., Wang, X., Qiao, Y., Li, F., Han, D., Wang, L., Zhang, G., Gao, X.: MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene, 1–9 (2013)

    Google Scholar 

  23. Weeraratne, S.D., Amani, V., Teider, N., Pierre-Francois, J., Winter, D.: Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta, Neuropathol. 123, 539–552 (2012)

    Article  Google Scholar 

  24. Tang, H., Bian, Y., Tu, C., Wang, Z., Yu, Z., Liu, Q., Xu, G., Wu, M., Li, G.: The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr. Cancer Drug Targets 13(2), 221–231 (2013)

    Article  Google Scholar 

  25. Guttilla, I.K., White, B.A.: Coordinate Regulation of FOXO1 by miR-27a, miR-96, and miR-182 in Breast Cancer Cells. J. Biol. Chem. 284, 23204–23216 (2009)

    Article  Google Scholar 

  26. Li, J., Fu, H., Xu, C., Tie, Y., Xing, R., Zhu, J., Qin, Y., Sun, Z., Zheng, X.: miR-183 inhibits TGF-β1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10, 354 (2010)

    Article  Google Scholar 

  27. Chiang, C.H., Hou, M.F., Hung, W.C.: Up-regulation of miR-182 by β-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim. Biophys. Acta. 1830, 3067–3076 (2013)

    Article  Google Scholar 

  28. Takata, A., Otsuka, M., Kojima, K., Yoshikawa, T., Kishikawa, T., Yoshida, H., Koike, K.: MicroRNA-22 and microRNA-140 suppress NF-κB activity by regulating the expression of NF-κB coactivators. Biochem. Biophys. Res. Commun. 411, 826–831 (2011)

    Article  Google Scholar 

  29. Li, X.F., Yan, P.J., Shao, Z.M.: Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 28, 3937–3948 (2009)

    Article  Google Scholar 

  30. Chen, J., Zhang, X., Lentz, C., Abi-Daoud, M., Paré, G.C., Yang, X., Feilotter, H.E., Tron, V.A.: miR-193b Regulates Mcl-1 in Melanoma. Am. J. Pathol. 179(5), 2162–2168 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lu, X., Dai, C., Hou, A., Cui, J., Cheng, D., Xu, D. (2014). Dysregulated microRNA Profile in HeLa Cell Lines Induced by Lupeol. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics