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Abstract. We consider a PH/PH/1 queue in which a threshold policy
determines the stage of the system. The arrival and service processes
follow a Phase-Type (PH) distribution depending on the stage of the
system. Each stage has both a lower and an upper threshold at which
the stage of the system changes, and a new stage is chosen according to a
prescribed distribution. The PH/PH/1 multi-threshold queue is a Quasi-
Birth-and-Death process with a tri-diagonal block structured boundary
state which we model as a Level Dependent Quasi-Birth-and-Death pro-
cess. An efficient algorithm is presented to obtain the stationary queue
length vectors using Matrix Analytic methods.

Keywords: PH/PH/1 queue, multiple thresholds, Matrix Analytic
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1 Introduction

We consider a PH/PH/1 queue in which a threshold policy determines the
stage of the system. The arrival and service processes follow a Phase-Type (PH)
distribution depending on the stage of the system. Each stage has both a lower
and an upper threshold at which the stage of the system changes. At these
thresholds a new stage is chosen according to a prescribed distribution.

In literature, threshold policies are often used to activate or deactivate servers
when the queue length reaches certain thresholds. The M/M/2 queue in which
the second server is activated when the queue length reaches an upper thresh-
old and deactivated when it reaches a lower threshold is studied in [11], where
a closed form expression is obtained for the steady-state probabilities. In [13],
see also Section 4.2, closed form expressions are obtained for the steady-state
distributions for the M/M/c with c heterogeneous servers. Using Green’s func-
tion, Ibe and Keilson [9] studied the M/M/c queue with homogeneous servers
and the M/M/2 queue with heterogeneous servers. The M/M/c with hetero-
geneous servers is also studied in [14] where the steady-state probabilities are
obtained using a stochastic complement analysis for uncoupling Markov Chains.
A MAP/M/c with homogeneous servers is analysed in [4] and the PH/M/2
queue with heterogeneous servers is studied by Neuts [16]. In [5], see also Sec-
tion 4.3, a very general setting is studied in which the generator of the queueing
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system forms a nested Quasi-Birth-and-Death process. In this model a thresh-
old policy controls the stage of the system which, in turn, determines the arrival
process and the service process. An upper threshold increases the stage by one
whereas the the lower threshold decreases the stage by one, creating a staircase
threshold policy. In [12] an M/M/2 queue is studied with two heterogeneous
servers in which the second server is exponentially delayed before activation.

Threshold policies are also used to send servers to a certain queue, as is shown
in [7]. In this paper, a system is studied containing two queues and two servers
where both interarrival times and service times are exponentially distributed.
After each service completion, the server chooses a queue to serve according
to a threshold policy. A generalisation of this model is analysed in [6] where
customers from multiple classes arrive according to a Poisson process and require
an exponential amount of service. The queueing system contains a fixed number
of servers which are allocated to a customer class according to a threshold policy.
Each server experiences an exponential delay once it is assigned to a different
customer class. In [17], the joint queue length distribution is obtained for an
M/G/1 queue with multiple customer classes in which customers from higher
class are blocked when thresholds are reached.

Motivating Example. The queueing system in this paper is motivated by the
hysteretic relation between density and speed of traffic flows observed on a high-
way, see Helbing [8]. In [8] it is stated that this hysteretic behaviour is controlled
by two critical densities, denoted by ρ1 and ρ2. When the density of cars on
the highway increases vehicles are more and more affected by each other and
the driving speeds decrease. Once the density reaches ρ2 the highway becomes
congested and driving speeds decrease drastically. The density must reduce to
ρ1 for the highway to become non-congested. In Baer, Boucherie and van Om-
meren [2], an M/M/1 threshold queue was used to model a particular highway
section. In [2], the arrival rates were kept constant, whereas the service rates
where altered according to a 2-stage threshold policy. When the queue length
surpasses an upper threshold the service rates decreased. The service rates were
increased again when the queue length dropped below a lower threshold. In [2],
the mean sojourn time is determined. Since a single queue represents a highway
section, this directly gives the average time to cross the highway section and the
mean speed of a vehicle. The motivating example in Figure 1 is an extension to
the model in [2], where not only the service rates are controlled by a threshold
policy, but also the arrival rates. This models the hysteretic relation within a
highway section, but also between two consecutive highway sections. We will,
get back to this example in Section 4.1.

Contribution. This paper generalises the model of [5] to an arbitrary threshold
policy and introduces a novel dedicated solution method based on the Level De-
pendent Quasi-Birth-and-Death process of [3]. In particular, a class of PH/PH/1
multi-threshold queueing systems is described for which the solution method in
[3] can be decomposed to find the stationary queue length vector for each stage
separately. The stationary distribution of the PH/PH/1 multi-threshold queue
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Fig. 1. State Diagram

can be obtained using the results in [3] but for a large number of stages, this
may result in computational demanding calculations. In this paper we use the
structure of the PH/PH/1 multi-threshold queue to form, based on the results
in [3], smaller and easier equations to obtain the stationary distribution.

Overview. Section 2 introduces thePH/PH/1multi-threshold queue andpresents
the queueing system as a LevelDependent Quasi-Birth-and-Deathprocess. In Sec-
tion 3 we analyse the multi-threshold queue using Matrix Analytic methods and
obtain the stationary queue length probabilities. Furthermore, we present a de-
composition theorem for a class of multi-threshold queues providing an explicit
description of the stationary queue length probability vectors. In Section 4 we il-
lustrate our results via three multi-threshold queues obtained from literature. Sec-
tion 5 gives concluding remarks.

2 Model Description

Consider a PH/PH/1 queue, controlled by a threshold policy. The system can
be in different stages s = 1 . . . , S, where every stage s is associated with a set
of feasible queue lengths {Ls, . . . , Us}. The quantities Ls and Us are the lower,
respectively upper thresholds for stage s. In case Us = ∞, we say that stage
s has no upper threshold. For each queue length n = 0, 1, . . ., a stage s is a
potential stage when Ls ≤ i ≤ Us. If the system is in stage s and a departure or
arrival causes the queue length to drop below Ls or to exceed Us, the stage of
the system changes (the threshold policy). If the queue length increases to Us+1
the stage changes from s to t with probability ps,t. Note that ps,t > 0 implies
that t is a potential stage for queue length Us +1. If the queue length decreases
to Ls − 1 the stage changes from s to t with probability qs,t. See Figure 1 for an
illustration with exponential service times and Poisson arrivals.
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The arrival process in stage s follows a PH(Λs,λs) distribution of vs + 1
phases (vs transient phases and 1 absorbing phase). We define Λ0

s = −Λsevs ,
with evs a vs×1 vector of ones. Furthermore we assume that the absorbing state
is never chosen as initial state, i.e. λsevs = 1. Similarly, the service process in
stage s is PH(Ms,μs) distributed with ws+1 phases. We defineM0

s = −Msews

and assume μsews = 1. The mean interarrival times and mean service time if
given by −λjΛ

−1
j evj and −μjM

−1
j ewj , see Neuts [15].

When an arrival or departure changes the stage of the system both the arrival
process and service process are reset by choosing a new initial phase for both
processes according to the distributions of the new stage.

This PH/PH/1 multi-threshold queue can be modelled as a four-dimensional
Markov Chain (i, s, x, y) where i and s represent the queue length and stage of
the system, x = 1, . . . , vs the phase of the arrival process and y = 1, . . . , ws the
phase of the service process. This queueing system is a Quasi-Birth-and-Death
process (QBD) [10] in which the levels are represented by the queue length
i, with i > maxs{Us}. Modelling the system as a QBD-process results in a
boundary level (level 0) containing the entire threshold policy. By ordering the
states lexicographically a tri-diagonal block structure emerges in the boundary
level. This structure is utilised by modelling the queueing system as a Level
Dependent Quasi-Birth-and-Death process (LDQBD) [3] in which the levels of
the LDQBD are the queue length i. We stress that, from here on, we refer to
the queue lenght as the level of the LDQBD. The other three variables represent
the phase within a level. The states are ordered lexicographically in (i, s, x, y).

The generator Q for this LDQBD is:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(0) F (0) 0 · · ·
B(1) L(1) F (1)

. . .

0 B(2) L(2)
. . .

...
. . .

. . .
. . . F (i−1)

B(i) L(i)
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where B(i) denotes the backward transitions (departures) from level i to level
i − 1, L(i) the local transitions within level i and F (i) the forward transitions
(arrivals) from level i to level i + 1.

If the number of potential stages for level i − 1, i and i + 1, are �, m and n
respectively, B(i) is a m× � matrix of submatrices B(i)

(j,k), L
(i) is a m×m matrix

of submatrices L(i)

(j,k)
and F (i) is a m×n matrix of submatrices F (i)

(j,k)
, describing

the backward, local and forward transition rates from stage j to stage k. Let It

denote the t × t identity matrix and let ⊗ denote the Kronecker product. For
s = 1, . . . , S, the forward, local and backward submatrices are given by:
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F
(i)
(s,j) =

⎧⎪⎨
⎪⎩

Λ0
s ⊗ λs ⊗ Iws , if j = s and Ls ≤ i < Us,

ps,j ·Λ0
s ⊗ ews ⊗ λj ⊗ μj , if i = Us,

0, otherwise.

(2)

L
(i)
(s,j) =

⎧⎪⎨
⎪⎩

Λs ⊗ Iws + Ivs ⊗Ms, if j = s, i > 0 and Ls ≤ i ≤ Us,

Λs ⊗ Iws , if j = s, i = 0 and Ls = 0,

0, otherwise.

(3)

B
(i)
(s,j) =

⎧
⎪⎨
⎪⎩

Ivs ⊗M0
s ⊗ μs, if j = s and Ls < i ≤ Us,

qs,j · evs ⊗M0
s ⊗ λj ⊗ μj , if i = Ls,

0, otherwise.

(4)

These formulas can be obtained by closely observing the queueing system.
Consider, for instance, the forward transition matrices F (i)

(s,j). When Ls ≤ i < Us

the stage cannot change upon an arrival, so j = s. Now, with rate Λ0
s an arrival

occurs at which an initial state is chosen with probability λs, independent of the
phase of the service process. The stage will change when an arrival occurs when
i = Us. Now, with rate Λ0

s, independent of the phase of the service process, an
arrival occurs and the stage changes from s to j with probability ps,j. During
this event an initial phase is chosen for both the arrival process and the service
process respectively probability λj and μj . Similar reasoning gives the relations
for L(i)

(s,j)
and B(i)

(s,j)
.

Remark 1. Note that modelling the queueing system as a QBD-process results
in the following generator

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̃00 Q̃01 0 · · · · · ·
Q̃10 L F

. . .

0 B L F
. . .

...
. . . B L

. . .
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The threshold policy, in the LDQBD-process described by the levels 0, . . . , Umax,
is now described in the submatrix Q̃00 with

Umax = 1 +max{Us : s = 1, . . . , S, Us < ∞}.
Finding the stationary distribution for the QBD-process, i.e. solving πQ̃ = 0,
would also include solving

π0Q̃00 + π1Q̃10 = 0,

with π0 and π1 denoting the stationary distribution of the entire threshold policy
and of the first level in the QBD-process respectively. By modelling the queueing
system as the LDQBD-process in (1) we split up level 0 in the QBD-process (5)
into smaller blocks such that the stationary distribution π is easier obtained.
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3 Steady-State Analysis

In the previous section we modelled the PH/PH/1 multi-threshold queue as
a LDQBD. In this section, following the analysis in [3] we obtain the steady-
state probabilities of the Markov Chain using Matrix Analytic methods. The
special structure of our generator allows us to obtain an efficient algorithm for
the R-matrices.

We assume the queueing system is stable, i.e., the mean service time is less
than the mean interarrival time, see [15], in stages without upper threshold:

−μjM
−1
j ewj < −λjΛ

−1
j evj , for j such that Uj = ∞.

The equilibrium distribution π = [π0,π1,π2, . . .] is then given, see Bright and
Taylor [3], by

πn = π0

n−1∏
i=0

R(i),

where R(i) is the minimal non-negative solution to

F (i) +R(i)L(i+1) +R(i)R(i+1)B(i+2) = 0, (6)

with 0 the zero matrix, see [3]. The element [R(i)](r,t) describes the mean sojourn
time in state (i + 1, t) per unit sojourn time in the state (i, r) before returning
to level i, given that the process started in state (i, r) see p. 499 in [3]. The
R(i)-matrices can be obtained using the algorithm for LDQBD’s by Bright and
Taylor [3]. For later convenience, by analogy of F (i)

(j,k)
, L(i)

(j,k)
and B(i)

(j,k)
, we define

the submatrix R(i)

(j,k)
of R(i) in which the element [R(i)

(j,k)
](r,t) describes the mean

sojourn time in state (i + 1, t) and stage k per unit sojourn time in state (i, r)
and stage j before returning returning to level i, given that the process started
in state (i, r) and stage j.

We obtain π0 by solving the boundary condition:

π0L
(0) + π1B

(1) = π0

(
L(0) +R(0)B(1)

)
= 0,

and the normalising equation:

1 =
∞∑

n=0

πne = π0

(
I +

∞∑
n=1

n−1∏
i=0

R(i)

)
e.

Above level Umax only stages without upper threshold are active and we may
define F = F (i), L = L(i) and B = B(i), i ≥ Umax, i.e., the LDQBD is level
independent from level Umax upwards. We have R(i) = R, i ≥ Umax, where R
is the minimal nonnegative solution of

F +RL+R2B = 0. (7)

The LDQBD is level independent from level Umax. Therefore, the matrices F ,
L, B and R are diagonal block matrices. As a consequence, (7) reduces to the
matrix equation for the submatrices R(s,s) of R

F (s,s) +R(s,s)L(s,s) +R2
(s,s)B(s,s) = 0, for s such that Us = ∞. (8)
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For i < Umax, the matrices R(i) are obtained from (6) by iteration

R(i) = −F (i)
[
L(i+1) +R(i+1)B(i+2)

]−1
, i = 0, 1, . . . , Umax − 1. (9)

Following the appendix in [3] the inverse exists and has only non-positive ele-
ments so that R(i), given by (9), is the unique non-negative solution to (6).

Notice that, unlike [3], we do not need to truncate the iteration for large i, as
the structure of our multi-threshold queue guarantees the existence of Umax <
∞, or for Umax = ∞ reduces to a single stage.

For a special class of multi-threshold queue the submatrices R(i)

(j,k)
of R(i) can

be obtained efficiently by considering the block elements of the l.h.s. of (6). This
result is presented in Theorem 1.

Theorem 1. For a multi-threshold queue consisting of S stages such that

(i) F (i)

(j,k) = 0, for k < j and i = 0, 1, . . ., and
(ii) if B(i)

(j,k)
�= 0, for k < j, then L(i−1)

(x,x)
= 0, for k < x ≤ j,

the submatrices R(i)

(j,k) of R
(i) are given by

R(i)

(j,j) = −F (i)

(j,j)

⎡
⎣L(i+1)

(j,j) +

S∑
b=j

R(i+1)

(j,b) B
(i+2)

(b,j)

⎤
⎦
−1

, (10)

R(i)

(j,k)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if k < j,

−
⎡
⎣F (i)

(j,k) +

k−1∑
a=j

S∑
b=a

R(i)

(j,a)R
(i+1)

(a,b) B
(i+2)

(b,k)

⎤
⎦

·
[
L(i+1)

(k,k)
+

S∑
b=k

R(i+1)

(k,b)
B(i+2)

(b,k)

]−1

, if k > j.

(11)

and

R(i)

(x,y)
= 0 if B(i+1)

(j,k)
�= 0 for k < x ≤ y ≤ j. (12)

Proof. Assuming R(i+1) is an upper triangular block matrix one can verify that
the unique solution to the block elements of the l.h.s. of (6), i.e.

0 = F (i)

(j,k)
+

S∑
a=1

R(i)

(j,a)
L(i+1)

(a,k)
+

S∑
a=1

S∑
b=1

R(i)

(j,a)
R(i+1)

(a,b)
B(i+2)

(b,k)

= F (i)

(j,k)
+R(i)

(j,k)
L(i+1)

(k,k)
+

S∑
a=1

S∑
b=a

R(i)

(j,a)
R(i+1)

(a,b)
B(i+2)

(b,k)
.

is given by (10), (11) and (12). Since R is a diagonal block matrix this proves
by induction that R(i), i = 0, 1, . . ., is an upper triangular block matrix and that
its submatrices are uniquely determined by (10), (11) and (12).
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The conditions of Theorem 1 can be interpreted as (i) at upper thresholds the
stage of the system can only change to higher stages, and (ii) at lower thresholds
the stage of the system can change to higher stages and to at most one lower
stage. If at level i the stage of the system changes from s to t, with t < s, then
all stages, r = t+ 1, . . . , s− 1 must not be potential stage for level i− 1.

Remark 2 (Upper triangularity of R(i)). Note that under the conditions of The-
orem 1, R(i) must be an upper triangular block matrix for all i. This implies
that only stage 1 has no lower threshold.

To prove this, we extend the interpretation of R(i) to the product R(i)R(i+1).
Observe that the element

[
R(i)R(i+1)

]
(r,t)

describes the mean sojourn time in

state (i + 2, t) per unit sojourn time in state (i, r) before returning to level i,
given that the process started in state (i, r). If the element

[
R(i)R(i+1)

]
(r,t)

= 0

then state (i + 2, t) cannot be reached from state (i, r) without visiting level i.
The same interpretation holds for the submatrices of the product

R(n) =

n−1∏
i=0

R(i).

If the submatrix R(n)(j,k) of R(n) is 0, then stage k at level n can never be
reached from stage j at level 0. Under the conditions of Theorem 1, R(i) is
an upper triangular block matrix for i ≥ 0, therefore, R(n) is also an upper
triangular block matrix for n ≥ 0. Suppose now that stage j �= 1 has no lower
threshold, then stages k < j can never be reached from stage j sinceR(n)(j,k) = 0
for k < j and n ≥ 0. This implies that stages k < j can be removed from the
threshold policy. Since the Markov Chain is irreducible, j = 1. �

In Corollary 1, we provide an efficient algorithm to compute the stationary queue
length vectors πi, i = 0, 1, . . ., using the submatrices ofR(i) defined in Theorem 1
and equation (8).

Corollary 1. Define the vector pi =
[
p1
i p2

i · · · pS
i

]
for i = 0, 1, . . . such that

pj
i =

⎧
⎪⎨
⎪⎩

j∑
a=1

pa
i−1R

(i−1)

(a,j)
, i = 1, . . . , Umax,

pj
Umax

[R(j,j)]
i−Umax , i = Umax + 1, Umax + 2, . . . ,

(13)

with p1
0 the solution to

p1
0

[
L(0)

(1,1) +

S∑
a=1

R(0)

(i,a)B
(1)

(a,i)

]
= 0, (14)

such that

p1
0e = 1, (15)
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and pj
0 = 0 for j = 2, . . . , S. Under the conditions of Theoren 1, the stationary

probability vector, πi =
[
π1

i π2
i · · · πS

i

]
, is given by

πj
i =

pj
i∑S

k=1 βk

, (16)

with

βk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uk∑
i=Lk

pk
i e, if Uk < ∞,

Umax−1∑
i=Lk

pk
i e+ pk

Umax
[I −R(k,k)]

−1
e, if Uk = ∞,

where e is a vector of ones and I the identity matrix of appropriate size.

Proof. From (13) is follows directly that

pi = pi−1R
(i−1),

and from (16)
πi = πi−1R

(i−1).

At level 0, only stage 1 is active (see Remark 1), it then follows from (14) that

p0

[
L(0) +R(0)B(1)

]
= 0,

and that
π0

[
L(0) +R(0)B(1)

]
= 0.

Stability of the multi-threshold queue guarantees that

S∑
j=1

∞∑
i=0

pj
ie =

∑
{j : Uj<∞}

Uj∑
i=Lj

pj
ie+

∑
{j : Uj=∞}

⎧⎨
⎩

Umax−1∑
i=Lj

pj
ie+

∞∑
i=Umax

pj
ie

⎫⎬
⎭

=
∑

{j : Uj<∞}
βj +

∑
{j : Uj=∞}

⎧
⎨
⎩

Umax−1∑
i=Lj

pj
ie+ pj

Umax

∞∑
i=0

[R(j,j)]
i
e

⎫
⎬
⎭

=
∑

{j : Uj<∞}
βj +

∑
{j : Uj=∞}

⎧
⎨
⎩

Umax−1∑
i=Lj

pj
ie+ pj

Umax
[I −R(j,j)]

−1
e

⎫
⎬
⎭

=

S∑
j=1

βj < ∞,

and that π is the stationary queue length distribution.

Remark 3 (Permutations of stages). Consider a multi-threshold queue with S
stages. If there exists a permutation of the S stages such that the conditions of
Theorem 1 hold, its stationary queue length vector can efficiently be obtained
using this permutation and the results from Theorem 1 and Corollary 1.
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4 Examples

In this section expressions for R(i)

(j,k)
and the stationary queue length distribution

πj
i are obtained for three multi-threshold queueing systems. These expressions

follow using Theorem 1 and Corollary 1 and are obtained by straightforward but
tedious derivations. The three multi-threshold queueing systems we will consider
are the multi-threshold queue from Figure 1, the staircase multi-threshold with
exponential service and arrival rates from [13] and the staircase multi-threshold
queue in a general setting from [5].

4.1 Extended Traffic Model

Consider the multi-threshold queue in Figure 1. Observe that the threshold pol-
icy in Figure 1 satisfies both conditions of Theorem 1. In this multi-threshold
queueing system, inspired by the traffic model in [2], we assume that

0 = L1 < L3 < L2 = L4 < U1 = U3 < U2 < U4 = ∞
and we define ρi =

λi

μi
. Note that by assuming exponential arrival and service

rates, each submatrix R(i)

(j,k)
reduces to a single element. Therefore, the solution

to equation (8) is ρ4 and each submatrix R(i)

(j,k)
is given by:

ρ1, i = 0, . . . , L3 − 2,

R(i)

(1,1)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ1

(
1−ρ

U1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
+
(
1−ρ

U1−L2+2
1

)(
1−ρ

U2−U1
2

)
(
1−ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
+
(
1−ρ

U1−L2+2
1

)(
1−ρ

U2−U1
2

) ,

i = L3 − 1, . . . , L2 − 2,

ρ1−ρ
U1+1−i
1

1−ρ
U1+1−i
1

, i = L2 − 1, . . . , U1 − 1,

R(i)

(1,2) =
λ1

μ2

(
ρ
U1−i
1 −ρ

U1−i+1
1

)(
1−ρ

U2−U1
2

)
(
1−ρ

U1+1−i
1

)(
1−ρ

U2+1−i
2

) , i = L2 − 1, . . . , U1,

R(i)

(1,3)
= λ1

μ3

(
ρ
U1−i
1 −ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
(
1−ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
+
(
1−ρ

U1−L2+2
1

)(
1−ρ

U2−U1
2

) ,

i = L3 − 1, . . . , L4 − 2,

R(i)

(1,4) =
λ1

μ4

(
ρ
U1−i
1 −ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2+1−i
2

)
(
1−ρ

U1+1−i
1

)(
1−ρ

U2+1−i
2

) , i = L4 − 1, . . . , U1,

R(i)

(2,2)
=

ρ2−ρ
U2+1−i
2

1−ρ
U2+1−i
2

, i = L2, . . . , U2 − 1,

R(i)

(2,3)
= 0, ∀i,

R(i)

(2,4) =
λ2

μ4

ρ
U2−i
2 −ρ

U2+1−i
2

1−ρ
U2+1−i
2

, i = L2, . . . , U2,

ρ3, i = L3, . . . , L4 − 2,

R(i)

(3,3)
=

{
ρ3−ρ

U3+1−i
3

1−ρ
U3+1−i
3

, i = L4 − 1, . . . , U3 − 1,
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R(i)

(3,4)
= λ3

μ4

ρ
U3−i
3 −ρ

U3+1−i
3

1−ρ
U3+1−i
3

, i = L4 − 1, . . . , U3,

R(i)

(4,4)
= ρ4, i = L4, L4 + 1, . . . .

The stationary queue length probability of i customers in stage j, πj
i , follows

from Corollary 1 by normalising pj
i . For i = 0:

1, j = 1,
pj
0 =

{

0, j �= 1,

and for i > 0:

p1
i = p1

i−1R
(i−1)

(1,1)
, 0 < i ≤ U1,

p1
i−1R

(i−1)

(1,2)
, i = L2,

p2
i =

⎧⎨
⎩ p1

i−1R
(i−1)

(1,2) + p2
i−1R

(i−1)

(2,2) , L2 < i ≤ U1 + 1,

p2
i−1R

(i−1)

(2,2)
, U1 + 1 < i ≤ U2,

p1
i−1R

(i−1)

(1,3)
, i = L3,

p3
i =

⎧
⎨
⎩ p1

i−1R
(i−1)

(1,3)
+ p3

i−1R
(i−1)

(3,3)
, L3 < i ≤ L4 − 1,

p3
i−1R

(i−1)

(3,3) , L4 − 1 < i ≤ U3,

p1
i−1R

(i−1)

(1,4)
+ p3

i−1R
(i−1)

(3,4)
, i = L4,

p1
i−1R

(i−1)

(1,4)
+ p2

i−1R
(i−1)

(2,4)
+ p3

i−1R
(i−1)

(3,4)
+ p4

i−1R
(i−1)

(4,4)
,

p4
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L4 < i ≤ U1 + 1,

p2
i−1R

(i−1)

(2,4) + p4
i−1R

(i−1)

(4,4) , U1 + 1 < i ≤ U2 + 1,

p4
U2+1

[
R(U2+1)

(4,4)

]i−U2−1
, U2 + 1 < i.

4.2 Le Ny and Tuffin [13]

Consider a multi-threshold queue of S stages as analysed by Le Ny and Tuffin in
[13]. In each stage i arrivals are Poisson distributed with rate λi, service times
are exponentially distributed with rate μi and we define ρi = λi

μi
. An arrival

changes the stage from j to j + 1 at Uj and a departure changes the stage from
j to j − 1 at Lj . We assume

0 = L1 < L2 < · · · < LS ≤ U1 < · · · < US−1 < US = ∞.

The state diagram created by this threshold policy forms a staircase as schemat-
ically shown in Figure 2.

As in Section 4.1 each submatrix R(i)

(j,k)
consists of a single element and equa-

tion (7), and in particular (8), gives

R(Umax)

(S,S) = ρS .

Both conditions of Theorem 1 are satisfied by the threshold policy and R(i)

(j,k) is
given by:
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Fig. 2. Schematic representation of the state diagram of a staircase threshold policy
with 4 stages.

ρj , Lj ≤ i ≤ Lj+1 − 2,

ρj−ρ
Uj+1−i

j

1−ρ
Uj+1−i

j

, Lj+1 − 1 ≤ i ≤ Uj,
R(i)

(j,j)
=

⎧
⎨
⎩

R(i)

(S,S) = ρS , LS ≤ i,

λj

μk

ρ
Uj−i

j −ρ
Uj+1−i

j

1−ρ
Uj+1−i

j

·∏k−1
a=j+1

ρ
Ua−Ua−1
a −ρUa+1−i

a

1−ρUa+1−i
a

, Lk − 1 ≤ i ≤ Lk+1 − 2,

R(i)

(j,k)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λj

μk

(
ρ
Uj−i

j −ρ
Uj+1−i

j

)(
1−ρ

Uk−Uk−1
k

)
(
1−ρ

Uj+1−i

j

)(
1−ρ

Uk+1−i

k

)

·∏k−1
a=j+1

ρ
Ua−Ua−1
a −ρUa+1−i

1−ρUa+1−i
a

, Lk+1 − 1 ≤ i ≤ Uj,

R(i)

(j,S) =
λj

μS

ρ
Uj−i

j −ρ
Uj+1−i

j

1−ρ
Uj+1−i

j

∏S−1
a=j+1

ρ
Ua−Ua−1
a −ρUa+1−i

a

1−ρUa+1−i
a

, LS − 1 ≤ i.

The stationary queue length distribution πj
i follows from Corollary 1 by normal-

ising pj
i . For i = 0:

pj
0 =

{
1,
0,

j = 1,
j �= 1,

for i > 0 and j = 1 or j = 2:

p1
i = p1

i−1R
(i−1)

(1,1)
, 0 < i ≤ U1, (17)

p2
i =

⎧
⎨
⎩

p1
i−1R

(i−1)

(1,2)
,

p1
i−1R

(i−1)

(1,2) + p2
i−1R

(i−1)

(2,2) ,
p2
i−1R

(i−1)

(2,2) ,

i = L2,
L2 < i ≤ U + 1,
U + 1 < i ≤ U2,

(18)

for i > 0 and j = 3, . . . , S − 1:

pj
i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑j−1
a=1 p

a
i−1R

(i−1)

(a,j)
,∑j

a=1 p
a
i−1R

(i−1)

(a,j)
,∑j

a=k p
a
i−1R

(i−1)

(a,j) ,

pj
i−1R

(i−1)

(j,j) ,

i = Lj ,
Lj < i ≤ U1 + 1,
Uk−1 + 1 < i ≤ Uk + 1, k = 2, . . . , j − 1,
Uj−1 + 1 < i ≤ Uj ,

(19)
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and for i > 0 and j = S

pS
i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑S−1
a=1 pa

i−1R
(i−1)

(a,S) ,∑S
a=1 p

a
i−1R

(i−1)

(a,S)
,∑S

a=k p
a
i−1R

(i−1)

(a,S)
,

pS
i−1

[
R(i−1)

(S,S)

]i−Umax
,

i = LS ,
LS < i ≤ U1 + 1,
Uk−1 + 1 < i ≤ Uk + 1, k = 2, . . . , S − 1,
Umax < i.

(20)

4.3 Choi et al [5]

Consider the multi-threshold queue of S stages as analysed by Choi et al [5].
This model generalises the staircase model of [13] to PH(Λs, λs) arrivals and
PH(Ms, μs) services in stage s. The forward, local and backward transition ma-
trices are given by (2), (3) and (4) respectively. In this case, the submatrices
R(i)

(j,k) are not single elements and the matrix equation (8) must be solved nu-
merically. The submatrices R(i)

(j,k)
, i = 0, . . . , Umax − 1, are iteratively given,

following Theorem 1, by

R(i)

(j,j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− F (i)

(j,j)

[
L(i+1)

(j,j)
+R(i+1)

(j,j)
B(i+2)

(j,j)

]−1
, Lj ≤ i < Uj − 1, i �= Lj+1 − 2,

− F (i)

(j,j)

[
L(i+1)

(j,j) +
∑j+1

b=j
R(i+1)

(j,b) B
(i+2)

(b,j)

]−1
,

i = Lj+1 − 2,

− F (i)

(j,j)

[
L(i+1)

(j,j)

]−1
, i = Uj − 1,

0, otherwise,

− [∑
k−1

a=j
R(i)

(j,a)R
(i+1)

(a,k)B
(i+2)

(k,k)

]

· [L(i+1)

(k,k) +R(i+1)

(k,k)B
(i+2)

(k,k)

]−1
, Lk − 1 ≤ i < Uj, i �= Lk+1 − 2,

− [∑k+1

b=k

∑k−1

a=j
R(i)

(j,a)R
(i+1)

(a,b) B
(i+2)

(b,k)

]

R(i)

(j,k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· [L(i+1)

(k,k)
+
∑k+1

b=k
R(i+1)

(k,b)
B(i+2)

(b,k)

]−1
, i = Lk+1 − 2,

− [
F (i)

(j,k)�{k=j+1} +
∑k−1

a=j+1
R(i)

(j,a)R
(i+1)

(a,k)B
(i+2)

(k,k)

]

· [L(i+1)

(k,k) +R(i+1)

(k,k)B
(i+2)

(k,k)

]−1
, i = Uj,

0, otherwise,

for j = 1, . . . , S − 1, and

R(S,S), LS ≤ i,
R(i)

(S,S) =

{

0, otherwise.

The stationary queue length distribution πj
i follows from Corollary 1 by normal-

ising pj
i . The vectors pj

i , i > 0, are given by equations (17), (18), (19) and (20).

Finally, p1
0 is obtained from (14) and (15) and pj

0 = 0, j > 1.



108 N. Baer. R.J. Boucherie, and J.K. van Ommeren

5 Summary and Conclusion

We introduced the PH/PH/1 multi-threshold queue where the arrival process
and service process are controlled by a threshold policy. The threshold policy
determines, based on the queue length, the stage of system, and the stage de-
termines the arrival and service processes. We modelled this queue as a Level
Dependent Quasi-Birth-and-Death process and obtained the stationary queue
length probabilities using Matrix Analytic methods.

A special class of multi-threshold queues is presented and explicit description
of the R-matrices has been obtained in terms of its submatrices. This decom-
position theorem allows an efficient computation of each R-submatrix as well as
the stationary queue length probability vectors.

Future work consists of a network of PH/PH/1 threshold queues in which the
threshold policy can control the service rates of previous queue, see Baer, Al
Hanbali, Boucherie and van Ommeren [1].

Acknowledgement. This research is supported by the Centre for Telematics
and Information Technology (CTIT) of the University of Twente. The authors
would like to thank the anonymous reviewers for their helpful suggestions.

References

1. Baer, N., Al Hanbali, A., Boucherie, R.J., van Ommeren, J.C.W.: A successive cen-
soring algorithm for a system of connected qbd-processes. Memorandum 2030. De-
partment ofAppliedMathematics, University of Twente, Enschede, TheNetherlands
(2013)

2. Baer, N., Boucherie, R.J., van Ommeren, J.C.W.: Threshold queueing describes the
fundamental diagram of uninterrupted traffic. Memorandum 2000. Department of
Applied Mathematics, University of Twente, Enschede, The Netherlands (2012)

3. Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level depen-
dent quasi-birth-and-death processes. Communications in Statistics - Stochastic
Models 11(3), 497–525 (1995)

4. Chakravarthy, S.R.: A multi-server queueing model with markovian arrivals and
multiple thresholds. Asia-Pacific Journal of Operational Research 24(2), 223–243
(2007)

5. Choi, S.H., Kim, B., Sohraby, K., Choi, B.D.: On matrix-geometric solution of
nested QBD chains. Queueing Systems 43, 5–28 (2003)

6. Chou, C.F., Golubchik, L., Lui, J.C.S.: Multiclass multiserver threshold based sys-
tems: A study of noninstantaneous server activation. IEEE Transactions on Parallel
and Distributed Systems 18(1), 96–110 (2007)

7. Feng, W., Adachi, K., Kowada, M.: A two-queue and two-server model with a
threshold-based control service policy. European Journal of Operational Research
137, 593–611 (2002)

8. Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Mod-
ern Physics 73 (2001)

9. Ibe, O.C., Keilson, J.: Multi-server threshold queues with hysteresis. Performance
Evaluation 21, 185–213 (1995)



The PH/PH/1 Multi-threshold Queue 109

10. Latouche, G., Ramaswami, V.: A logarithmic reduction algorithm for quasi-birth-
death processes. Journal of Applied Probability 30, 650–674 (1993)
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