Skip to main content

3D Modelling Through Photogrammetry in Cultural Heritage

  • Living reference work entry
  • First Online:

Synonyms

Photogrammetry; Terrestrial Photogrammetry

Definitions

Photogrammetry is a technique for estimating the exact position of surface points of an object by using multiple photographs. Aerial photogrammetry is based on the acquisition of photographs of a certain area from the sky, commonly by placing cameras on a plane, drone, or even a satellite, to create a topographical map or terrain model. Terrestrial photogrammetry aims at taking 3D measurements of an object, using photographs of that object taken from a camera positioned on the surface of the earth. Terrestrial photogrammetry is also referred to as close-range photogrammetry when the photographs of the object are taken at a close range.

Introduction

Photogrammetry is a manual process which requires in-depth understanding since it involves several aspects; for instance, the focal length and position of the camera when taking each photograph will impact the quality of the end result. However, recent technological advancements...

This is a preview of subscription content, log in via an institution.

References

  • Fassi, F., Fregonese, L., Ackermann, S., De Troia, V.: Comparison between laser scanning and automated 3D modelling techniques to reconstruct complex and extensive cultural heritage areas. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 5, W1 (2013)

    Google Scholar 

  • Grussenmeyer, P., Landes, T., Voegtle, T., Ringle, K.: Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 37, 213–218 (2008)

    Google Scholar 

  • Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., Chamzas, C.: Methods for 3D digitization of cultural heritage. J. Cult. Herit. 8, 93–98 (2007)

    Article  Google Scholar 

  • Pieraccini, M., Guidi, G., Atzeni, C.: 3D digitizing of cultural heritage. J. Cult. Herit. 2, 63–70 (2001)

    Article  Google Scholar 

  • Remondino, F., Guarnieri A., Vettore, A.: 3D modeling of close-range objects: photogrammetry or laser scanning?. Videometrics VIII. Vol. 5665. International Society for Optics and Photonics 2005

    Google Scholar 

  • Santagati, C., Inzerillo, L., Di Paola, F.: Image-based modeling techniques for architectural heritage 3D digitalization: limits and potentialities. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 5. w2, 555–560 (2013)

    Article  Google Scholar 

  • Westoby, M., Brasington, J., Glasser, N., Hambrey, M., Reynolds, J.: ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology. 179, 300–314 (2012)

    Article  Google Scholar 

  • Yilmaz, H.M., Yakar, M., Gulec, S.A., Dulgerler, O.N.: Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 8, 428–433 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Dzardanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kasapakis, V., Gavalas, D., Dzardanova, E. (2018). 3D Modelling Through Photogrammetry in Cultural Heritage. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_206-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08234-9_206-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08234-9

  • Online ISBN: 978-3-319-08234-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics