Skip to main content

Redirected Walking in Virtual Reality

  • Living reference work entry
  • First Online:

Synonyms

Redirection techniques

Definitions

Redirected Walking (RDW) is a collection of virtual reality (VR) locomotion techniques for immersive virtual environments (IVE) that enables humans to walk on paths in the real world, which may vary from the paths they perceive in the virtual environment (VE). RDW can be implemented by manipulations applied to the displayed scene, usually by using redirection gains, which force the user to compensate by repositioning and/or reorienting themselves in order to maintain their intended walking direction in the VE. Within certain detection thresholds, such manipulations cannot be noticed by the user.

Introduction

Locomotion is one of the most important forms of interaction in VR, but its realistic implementation is also one of the most challenging task in VR development (Steinicke et al. 2013). Real human walking is the most natural way of locomotion in VR (Steinicke et al. 2013) due to its multimodal nature. Furthermore, real walking is...

This is a preview of subscription content, log in via an institution.

References

  • Azmandian, M., Grechkin, T., Bolas, M., Suma, E.: Physical space requirements for redirected walking: how size and shape affect performance. In: Proceedings of International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual En-vironments (ICAT-EGVE), pp. 93–100 (2015)

    Google Scholar 

  • Azmandian, M., Grechkin, T., Bolas, M., Suma, E.: The redirected walking toolkit: a unified development and deployment platform for exploring large virtual environments. In: Everyday VR Workshop, IEEE VR (2016a)

    Google Scholar 

  • Azmandian, M., Grechkin, T., Bolas, M, Suma, E.: Automated path prediction for redirected walking using navigation meshes. In: IEEE Symposium on 3D User Interfaces (3DUI), pp. 63–66 (2016b)

    Google Scholar 

  • Azmandian, M., Grechkin, T., Rosenberg, E.S.: An evaluation of strategies for two-user redirected walking in shared physical spaces. In: IEEE Virtual Reality (VR), pp. 91–98 (2017)

    Google Scholar 

  • Berthoz, A.: The Brain’s Sense of Movement. Harvard University Press, Cambridge, MA (2000)

    Google Scholar 

  • Bertin, R.J., Israel, I., Lappe, M.: Perception of two-dimensional, simulated ego-motion trajec-tories from optic flow. Vis. Res. 40(21), 2951–2971 (2000)

    Article  Google Scholar 

  • Bouguila, L., Sato, M.: Virtual locomotion system for large-scale virtual environ-ment. In: Proceedings of IEEE Virtual Reality (VR), pp. 291–292 (2002)

    Google Scholar 

  • Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomo-tion technique for virtual reality. In: Proceedings of ACM Symposium on Computer-Human Interaction in Play (CHI Play), pp. 205–216 (2016)

    Google Scholar 

  • Bruder, G., Steinicke, F., Hinrichs, K.H.: Arch-explore: a natural user interface for immer-sive architectural walkthroughs. In: Proceedings of IEEE Symposium on 3D User Interfaces (3DUI), pp. 75–82 2009

    Google Scholar 

  • Bruder, G., Interrante, V., Phillips, L., Steinicke, F.: Redirecting walking and driving for natural navigation in immersive virtual environments. IEEE Trans. Vis. Comput. Graph. 18(4), 538–545 (2012)

    Article  Google Scholar 

  • Bruder, G., Lubos, P., Steinicke, F.: Cognitive resource demands of redirected walking. IEEE Trans. Vis. Comput. Graph. 21(4), 539–544 (2015)

    Article  Google Scholar 

  • Dichgans, J., Brandt, T.: Visual vestibular interaction: effects on self-motion perception and postural control. In: Held, R., Leibowitz, H.W., Teuber, H.L. (eds.) Perception. Handbook of Sensory Physiology, vol. 8, pp. 755–804. Springer, Berlin/Heidelberg/New York (1978)

    Google Scholar 

  • Freitag, S., Rausch, D., Kuhlen, T.: Reorientation in virtual environments using interactive portals. In: IEEE Symposium on 3D User Interfaces (3DUI), pp. 119–122 (2014)

    Google Scholar 

  • Grechkin, T., Thomas, J., Azmandian, M., Bolas, M., Suma, E.: Revisiting detection thresholds for redirected walking: combining translation and curvature gains. In: Proceedings of ACM Symposium on Applied Perception (SAP), pp. 113–120 (2016)

    Google Scholar 

  • Hodgson, E., Bachmann, E.: Comparing four approaches to generalized redirected walk-ing: simulation and live user data. IEEE Trans. Vis. Comput. Graph. 19(4), 634–643 (2013)

    Article  Google Scholar 

  • Hodgson, E., Bachmann, E., Waller, D.: Redirected walking to explore virtual environ-ments: assessing the potential for spatial interference. ACM Trans. Appl. Percept. 8(4), 22 (2011)

    Article  Google Scholar 

  • Hodgson, E., Bachmann, E., Thrash, T.: Performance of redirected walking algorithms in a constrained virtual world. IEEE Trans. Vis. Comput. Graph. 20(4), 579–587 (2014)

    Article  Google Scholar 

  • Interrante, V., Riesand, B., Anderson, L. Seven league boots: a new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In: Proceedings of IEEE Symposium on 3D User Interfaces, pp. 167–170. IEEE (2007)

    Google Scholar 

  • Iwata, H., Hiroaki, Y., Tomioka, H.: Powered shoes. In: International Conference on Computer Graphics and Interactive Techniques, number 28. ACM (2006)

    Google Scholar 

  • Jerald, J., Peck, T., Steinicke, F., Whitton, M.: Sensitivity to scene motion for phases of head yaws. In: Proceedings of Applied Perception in Graphics and Visualization, pp. 155–162. ACM (2008)

    Google Scholar 

  • Kohli, L., Burns, E., Miller, D., Fuchs, H.: Combining passive haptics with redirected walk-ing. In: Proceedings of Conference on Augmented Tele-Existence, vol. 157, pp. 253–254. ACM (2005)

    Google Scholar 

  • Kruse, L., Langbehn, E., Steinicke, F.: I can see on my feet while walking: sensitivity to translation gains with visible feet. In: IEEE Virtual Reality (VR) (2018)

    Google Scholar 

  • Langbehn, E., Eichler, T., Ghose, S., von Luck, K., Bruder, G, Steinicke, F.: Evaluation of an omnidirectional walking-in-place user interface with virtual locomotion speed scaled by forward leaning angle. In: GI Workshop on Virtual and Augmented Reality (GI VR/AR), pp. 149–160 (2015)

    Google Scholar 

  • Langbehn, E., Lubos, P., Bruder, G., Steinicke, F.: Bending the curve: sensitivity to bending of curved paths and application in room-scale vr. IEEE Trans. Vis. Comput. Graph. 23, 1389–1398 (2017a)

    Article  Google Scholar 

  • Langbehn, E., Lubos, P., Bruder, G., Steinicke, F.: Application of redirected walking in room-scale vr. In: Virtual Reality (VR) (2017b)

    Google Scholar 

  • Langbehn, E., Lubos, P., Steinicke, F.: Redirected spaces: going beyond borders. In: IEEE Virtual Reality (VR) 2018

    Google Scholar 

  • Lappe, M., Bremmer, F., van den Berg, A.V.: Perception of self-motion from visual flow. Trends Cogn. Sci. 3(9), 329–336 (1999)

    Article  Google Scholar 

  • LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)

    Article  Google Scholar 

  • Lubos, P., Bruder, G., Steinicke, F.: Safe-&-round: bringing redirected walking to small virtual reality laboratories. In: Proceedings of ACM Symposium on Spatial User Interaction (SUI), pp. 154–154 (2014)

    Google Scholar 

  • Matsumoto, K., Ban, Y., Narumi, T., Tanikawa, T., Hirose, M.: Curva-ture manipulation techniques in redirection using haptic cues. In: IEEE Symposium on 3D User Interfaces (3DUI), pp. 105–108 (2016a)

    Google Scholar 

  • Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: ACM SIGGRAPH Emerging Technologies, p. 20 (2016b)

    Google Scholar 

  • Meyer, F., Nogalski, M., Fohl, W.: Detection thresholds in audio-visual redirected walking. Proc. Sound and Music Comp. Conf. (SMC). 16(1), (2016)

    Google Scholar 

  • Nescher, T., Huang, Y-Y, Kunz, A.: Planning redirection techniques for optimal free walking experience using model predictive control. In: IEEE Symposium on 3D User Interfaces (3DUI) (2014)

    Google Scholar 

  • Neth, C.T., Souman, J.L., Engel, D., Kloos, U., Bulthoff, H., Mohler, B.J.: Velocity-dependent dynamic curvature gain for redirected walking. In: Proceedings of IEEE Virtual Reality (VR), pp. 151–158 (2011)

    Google Scholar 

  • Neth, C.T., Souman, J.L., Engel, D., Kloos, U., Bulthoff, H.H., Mohler, B.J.: Velocity-dependent dynamic curvature gain for redirected walking. IEEE Trans. Vis. Comput. Graph. 18(7), 1041–1052 (2012)

    Article  Google Scholar 

  • Nilsson, N.C., Serafin, S., Nordahl, R.: Walking in place through virtual worlds. In: International Conference on Human-Computer Interaction, pp. 37–48. Springer (2016a)

    Google Scholar 

  • Nilsson, N.C., Suma, E., Nordahl, R., Bolas, M., Serafin, S.: Estimation of detection thresholds for audiovisual rotation gains. In: IEEE Virtual Reality (VR), pp. 241–242 (2016b)

    Google Scholar 

  • Nitzsche, N., Hanebeck, U.D., Schmidt, G.: Motion compression for telepresent walking in large target environments. Presence. 13, 44–60 (2004)

    Article  Google Scholar 

  • Nogalski, M., Fohl, W.: Acoustic redirected walking with auditory cues by means of wave field synthesis. In: IEEE Virtual Reality (VR), pp. 245–246 (2016)

    Google Scholar 

  • Paludan, A.G., Elbaek, J., Mortensen, M., Zobbe, M., Nilsson, N.C., Nor-dahl, R., Reng, L, Serafin, S.: Disguising rotational gain for redirected walking in virtual reality: effect of visual density. In: Proceedings of IEEE Virtual Reality (VR) (2016)

    Google Scholar 

  • Peck, T.C., Fuchs, H., Whitton, M.C.: Evaluation of reorientation techniques for walking in large virtual environments. In: Proceedings of IEEE Virtual Reality (VR), pp. 121–128. IEEE (2008)

    Google Scholar 

  • Peck, T.C., Fuchs, H., Whitton, M.C.: An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotion interfaces. In: Proceedings of IEEE Virtual Reality (VR), pp. 56–62. IEEE (2011)

    Google Scholar 

  • Razzaque, S.: Redirected walking. PhD thesis, University of North Carolina, Chapel Hill (2005)

    Google Scholar 

  • Razzaque, S., Kohn, Z., Whitton, M.: Redirected walking. In: Proceedings of Eurographics, pp. 289–294. ACM (2001)

    Google Scholar 

  • Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual en-vironments. ACM Trans. Comput. Hum. Interact. 16(1), 5:1–5:18 (2009)

    Article  Google Scholar 

  • Ruddle, R.A., Volkova, E.P., Bulthoff¨, H.H.: Walking improves your cognitive map in en-vironments that are large-scale and large in extent. ACM Trans. Comput. Hum. Interact. 18(2), 10:1–10:22 (2010)

    Google Scholar 

  • Schrempf, O.C., Albrecht, D., Hanebeck, U.D.: Tractable probabilistic models for intention recognition based on expert knowledge. In: IEEE/RSJ Intelligent Robots and Systems (IROS), pp. 1429–1434, (2007)

    Google Scholar 

  • Schwaiger, M., Thummel, T., Ulbrich, H.: Cyberwalk: implementation of a ball bearing plat-form for humans. In: Proceedings of HCI, pp. 926–935 (2007)

    Google Scholar 

  • Serafin, S., Nilsson, N.C., Sikstrom, E., De Goetzen, A., Nordahl, R.: Estima-tion of detection thresholds for acoustic based redirected walking techniques. In: IEEE Virtual Reality (VR), pp. 161–162 (2013)

    Google Scholar 

  • Simons, D.J., Levin, D.T.: Change blindness. Trends Cogn. Sci. 1(7), 261–267 (1997)

    Article  Google Scholar 

  • Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Analyses of human sensitivity to redirected walking. In: Proceedings of 15th ACM Symposium on Virtual Reality Software and Technology, pp. 149–156 (2008a)

    Google Scholar 

  • Steinicke, F., Bruder, G., Ropinski, T., Hinrichs, K.: Moving towards generally applicable redirected walking. In: Proceedings of the Virtual Reality International Conference (VRIC), pages 15–24. IEEE Press (2008b)

    Google Scholar 

  • Steinicke, F., Bruder, G., Kohli, L., Jerald, J., Hinrichs, K.: Taxonomy and im-plementation of redirection techniques for ubiquitous passive haptic feedback. In: IEEE Cyberworlds, pp. 217–223 (2008c)

    Google Scholar 

  • Steinicke, F., Bruder, G., Hinrichs, K., Steed, A.: Presence-enhancing real walk-ing user interface for first-person video games. In: Proceedings of ACM SIGGRAPH Symposium on Video Games, pp. 111–118 (2009)

    Google Scholar 

  • Steinicke, F., Bruder, G., Jerald, J., Fenz, H., Lappe, M.: Estimation of detec-tion thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16(1), 17–27 (2010)

    Article  Google Scholar 

  • Steinicke, F., Visell, Y., Campos, J., Lecuyer, A.: Human Walking in Virtual Environments: Perception, Technology, and Applications. Springer, New York (2013)

    Book  Google Scholar 

  • Suma, E.A., Clark, S., Finkelstein, S.L., Wartell, Z.: Exploiting change blindness to expand walkable space in a virtual environment. In: Proceedings of IEEE Virtual Reality (VR), pp. 305–306 (2010)

    Google Scholar 

  • Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments. In: Proceedings of IEEE Virtual Reality (VR), pp. 43–46 (2012a)

    Google Scholar 

  • Suma, E.A., Lipps, Z., Finkelstein, S., Krum, D.M., Bolas, M.: Im-possible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Vis. Comput. Graph. 18(4), 555–564 (2012b)

    Article  Google Scholar 

  • Suma, E.A., Azmandian, M., Grechkin, T., Phan, T., Bolas, M.: Making small spaces feel large: infinite walking in virtual reality. In: ACM SIGGRAPH 2015 Emerging Tech-nologies, p. 16. ACM (2015)

    Google Scholar 

  • Sun, Q., Wei, L.-Y., Kaufman, A.: Mapping virtual and physical reality. ACM Trans. Graph. 35(4), 64 (2016)

    Article  Google Scholar 

  • Thi Anh Ngoc, N., Rothacher, Y., Brugger, P., Lenggenhager, B., Kunz, A.: Estimation of individual redirected walking thresholds using standard perception tests. In: Proceedings of ACM Conference on Virtual Reality Software and Technology (VRST), pp. 329–330 (2016)

    Google Scholar 

  • Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks, Jr, F.P.: Walking > walking-in-place > flying, in virtual environments. In: Pro-ceedings of ACM SIGGRAPH, pp. 359–364 (1999)

    Google Scholar 

  • Vasylevska, K., Kaufmann, H.: Influence of path complexity on spatial overlap perception in virtual environments. In: Proceedings of the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments, pp. 159–166. Eurographics Association (2015)

    Google Scholar 

  • Vasylevska, K, Kaufmann, H.: Towards efficient spatial compression in self-overlapping virtual environments. In: Symposium on 3D User Interfaces (3DUI) (2017)

    Google Scholar 

  • Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: dy-namic layout generation for infinite walking in virtual environments. In: 3D User Interfaces (3DUI), 2013 I.E. Symposium on, pp. 39–42. IEEE (2013)

    Google Scholar 

  • Williams, B., Narasimham, G., Rump, B., McNamara, T.P., Carr, T.H., Rieser, J., Bodenheimer, B.: Exploring large virtual environments with an hmd when physical space is limited. In: Proceedings of ACM Symposium on Applied Perception in Graph-ics and Visualization (APGV), pp. 41–48 2007

    Google Scholar 

  • Yu, R., Lages, W.S., Nabiyouni, M., Ray, B., Kondur, N., Chan-drashekar, V., Bowman, D.A.: Bookshelf and bird: Enabling real walking in large vr spaces. In: IEEE Symposium on3D User Interfaces (3DUI), pp. 116–119 2017

    Google Scholar 

  • Zank, M., Kunz, A.: Using locomotion models for estimating walking targets in immersive virtual environments. In: IEEE International Conference on Cyberworlds (CW) (2015)

    Google Scholar 

  • Zank, M., Kunz, A.. Eye tracking for locomotion prediction in redirected walking. In: IEEE Symposium on 3D User Interfaces (3DUI) (2016)

    Google Scholar 

  • Zank, M., Kunz, A.: Optimized graph extraction and locomotion prediction for redi-rected walking. In: IEEE Symposium on 3D User Interfaces (3DUI) (2017)

    Google Scholar 

  • Zhang, R., Kuhl, S.A.: Flexible and general redirected walking for head-mounted dis-plays. In: IEEE Virtual Reality (VR), pp. 127–128 2013

    Google Scholar 

  • Zhang, R., Walker, J., Kuhl, S.A.: Improving redirection with dynamic reorienta-tions and gains. In: ACM SIGGRAPH Symposium on Applied Perception (SAP), pp. 136–136 (2015)

    Google Scholar 

  • Zmuda, M.A., Wonser, J.L., Bachmann, E.R., Hodgson, E.: Optimizing constrained-environment redirected walking instructions using search techniques. IEEE Trans. Vis. Comput. Graph. 19(11), 1872–1884 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike Langbehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Langbehn, E., Steinicke, F. (2018). Redirected Walking in Virtual Reality. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_253-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08234-9_253-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08234-9

  • Online ISBN: 978-3-319-08234-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics