Skip to main content

Tensor Field Visualization

  • Living reference work entry
  • First Online:
  • 96 Accesses

Definition

A tensor, specifically a second order tensor, is a linear mapping from vectors to vectors and is represented by a multidimensional array of values called its “components.”

A tensor field is a mapping from each point in some spatial domain (usually 2D or 3D) to a tensor.

Tensor field visualization is the process of visually representing tensor fields so that features of interest in the field become apparent to the viewer.

Introduction

Some physical phenomena can be represented by a single number, or scalar value. Temperature and density are well-known examples. Other quantities characterized by a magnitude and direction, like force and velocity, are represented as a vector. Yet other phenomena, like mechanical stress and diffusion, are represented by a matrix. This progression, from scalar to vector to matrix, is generalized by the concept of tensor order. Tensors of order 0 are represented by scalars, tensors of order 1 are represented by vectors, and tensors of order 2 are...

This is a preview of subscription content, log in via an institution.

References

  • Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Google Scholar 

  • Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

    Google Scholar 

  • Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques, pp. 263–270. ACM, Anaheim, CA (1993)

    Google Scholar 

  • Delmarcelle, T., Hesselink, L.: Visualizing second-order tensor fields with hyperstreamlines. IEEE Comput. Graph. Appl. 13(4), 25–33 (1993)

    Google Scholar 

  • Hsu, E.: Generalized line integral convolution rendering of diffusion tensor fields. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 9th Scientific Meeting and Exhibition, Glasgow, vol. 790 (2001)

    Google Scholar 

  • Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference on Visualization, pp. 147–154. Eurographics Association, Konstanz, Germany (2004)

    Google Scholar 

  • Kindlmann, G., Westin, C.-F.: Diffusion tensor visualization with glyph packing. IEEE Trans. Vis. Comput. Graph. 12(5), 1329–1336 (2006)

    Google Scholar 

  • Kindlmann, G., Tricoche, X., Westin, C.-F.: Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Med. Image Anal. 11(5), 492–502 (2007)

    Google Scholar 

  • Kondratieva, P., Kruger, J., Westermann, R.: The application of GPU particle tracing to diffusion tensor field visualization. In: IEEE Visualization 2005, pp. 73–78. IEEE, Minneapolis, MN (2005)

    Google Scholar 

  • Laidlaw, D.H., Ahrens, E.T., Kremers, D., Avalos, M.J., Jacobs, R.E., Readhead, C.: Visualizing diffusion tensor images of the mouse spinal cord. In: Proceedings of Visualization’98, pp. 127–134. IEEE, Research Triangle Park, NC (1998)

    Google Scholar 

  • McGraw, T., Vemuri, B.C., Wang, Z., Chen, Y., Rao, M., Mareci, T.: Line integral convolution for visualization of fiber tract maps from DTI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 615–622. Springer, Tokyo, Japan (2002)

    Google Scholar 

  • Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Google Scholar 

  • Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn. Reson. Med. 53(4), 866–876 (2005)

    Google Scholar 

  • Schultz, T., Theisel, H., Seidel, H.-P.: Topological visualization of brain diffusion MRI data. IEEE Trans. Vis. Comput. Graph. 13(6), 1496–1503 (2007)

    Google Scholar 

  • Tricoche, X., Kindlmann, G., Westin, C.-F.: Invariant crease lines for topological and structural analysis of tensor fields. IEEE Trans. Vis. Comput. Graph. 14(6), 1627–1634 (2008)

    Google Scholar 

  • Weldeselassie, Y.T., Barmpoutis, A., Atkins, M.S.: Symmetric positive semidefinite Cartesian tensor fiber orientation distributions (CT-FOD). Med. Image Anal. 16(6), 1121–1129 (2012)

    Google Scholar 

  • Westin, C.-F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6(2), 93–108 (2002)

    Google Scholar 

  • Zheng, X., Pang, A.: HyperLIC. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), pp. 249–256. IEEE Computer Society, Seattle, WA (2003)

    Google Scholar 

  • Zheng, X., Pang, A.: Topological lines in 3D tensor fields. In: Proceedings of the Conference on Visualization’04, pp. 313–320. IEEE Computer Society, Austin, TX (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim McGraw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

McGraw, T. (2017). Tensor Field Visualization. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_96-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08234-9_96-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08234-9

  • Online ISBN: 978-3-319-08234-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics