Skip to main content

Stereo Graph-SLAM for Autonomous Underwater Vehicles

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 13

Abstract

The increasing use of Autonomous Underwater Vehicles (AUV) in industrial or scientific applications makes the vehicle localization one of the challenging questions to consider for the mission success. Graph-SLAM has emerged as a promising approach in land vehicles; however, due to the complexity of the aquatic media, these systems have been rarely applied in underwater vehicles. The few existing approaches are focused on very particular applications and require important amounts of computational resources, since they optimize the coordinates of the external landmarks and the vehicle trajectory, all together. This paper presents a simplified and fast general approach for stereo graph-SLAM, which optimizes the vehicle trajectory, treating the features out of the graph. Experiments with robots in aquatic environments show how the localization approach is effective underwater, online at 10 fps, and with very limited errors. The implementation has been uploaded to a public repository, being available for the whole scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: Recent advances and new challenges. In: IFAC Conference of Manoeuvering and Control of Marine Craft, Lisbon, Portugal (September 2006)

    Google Scholar 

  2. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping (SLAM): part I. IEEE Robotics and Automation Magazine 13(2) (June 2006) 99–110

    Article  Google Scholar 

  3. Bonin, F., Burguera, A., Oliver, G.: Imaging systems for advanced underwater vehicles. Journal of Maritime Research 8(1) (April 2011) 65–86

    Google Scholar 

  4. Schattschneider, R., Maurino, G., Wang, W.: Towards stereo vision slam based pose estimation for ship hull inspection. In: Proceedings of Oceans, Waikoloa, Hawaii (June 2011) 1–8

    Google Scholar 

  5. Eustice, R., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 33(2) (April 2008) 103–122

    Article  Google Scholar 

  6. Dellaert, F., Kaess, M.: Square root sam: Simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research 25(12) (2006) 1181–1203

    Article  MATH  Google Scholar 

  7. Konolige, K., Grisetti, G., Kmmerle, R., Burgard, W., Limketkai, B., Vincent, R.: Efficient sparse pose adjustment for 2d mapping. In: Proceedings of the IEEE/RSJ IROS, Taipei, Taiwan (2010)

    Google Scholar 

  8. Strasdat, H., Montiel, J., Davison, A.: Scale drift-aware large scale monocular slam. In: Proceedings of Robotics: Science and Systems (RSS). (2010)

    Google Scholar 

  9. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g\(^{2}\)o: A general framework for graph optimization. In: Proceedings of the IEEE ICRA. (Shangai-China 2011) 3607–3613

    Google Scholar 

  10. Beall, C., Dellaert, F., Mahon, I., Williams, S.: Bundle adjustment in large-scale 3d reconstructions based on underwater robotic surveys. In: Proceedings of Oceans, Santander, Spain (June 2011)

    Google Scholar 

  11. Hover, F.S., Eustice, R.M., Kim, A., Englot, B., Johannsson, H., Kaess, M., Leonard, J.J.: Advanced perception, navigation and planning for autonomous in-water ship hull inspection. Journal of Robotics Research 31(12) (2011) 1445–1464

    Article  Google Scholar 

  12. Kim, A., Eustice, R.M.: Combined visually and geometrically informative link hypothesis for pose-graph visual slam using bag-of-words. In: Proceedings of the IEEE/RSJ IROS, San Francisco, USA (2011) 1647–1654

    Google Scholar 

  13. Bujnak, M., Kukelova, S., Pajdla, T.: New efficient solution to the absolute pose problem for camera with unknown focal length and radial distortion. Lecture Notes in Computer Science (6492) (2011) 11–24

    Article  Google Scholar 

  14. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6) (1981) 381–395

    Article  MathSciNet  Google Scholar 

  15. Ribas, D., Palomeras, N., Ridao, P., Carreras, M., Mallios, A.: Girona 500 auv: From survey to intervention. IEEE/ASME Transactions on Mechatronics 17(1) (2012) 46–53

    Article  Google Scholar 

  16. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.: ROS: an open source robot operating system. In: ICRA Workshop on Open Source Software. (2009)

    Google Scholar 

  17. Negre, P.L., Massot, M.: ros.org. http://wiki.ros.org/stereo_slam (2013) [Online; published January 2014].

  18. Grisetti, G., Stachniss, C., Burgard, W.: Non-linear constraint network optimization for efficient map learning. IEEE Transactions on Intelligent Transportation Systems 10(3) (2009) 428–439

    Article  Google Scholar 

  19. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany (June 2011)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Spanish Ministry of Economy and Competitiveness under contracts PTA2011-05077 and DPI2011-27977-C03-02, FEDER Funding and by Govern Balear (Ref 71/2011). The authors are grateful to the members of the CIRS (University of Girona) for making available their facilities, including the AUV Girona500, used for some experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pep Lluis Negre Carrasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Carrasco, P.L.N., Bonin-Font, F., Codina, G.O. (2016). Stereo Graph-SLAM for Autonomous Underwater Vehicles. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08338-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08337-7

  • Online ISBN: 978-3-319-08338-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics