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Abstract. This paper presents a visual simultaneous localization and mapping
(SLAM) system consisting of a robust visual odometry and an efficient back-end
with loop closure detection and pose-graph optimization. Robustness of the visual
odometry is achieved by utilizing dual cameras pointing different directions with
no overlap in their respective fields of view mounted on an micro aerial vehicle
(MAV). The theory behind this dual-camera visual odometry can be easily ex-
tended to applications with multiple cameras. The back-end of the SLAM system
maintains a keyframe-based global map, which is used for loop closure detec-
tion. An adaptive-window pose-graph optimization method is proposed to refine
keyframe poses of the global map and thus correct pose drift that is inherent in the
visual odometry. The position of each map point is then refined implicitly due to
its relative representation to its source keyframe. We demonstrate the efficiency
of the proposed visual SLAM algorithm for applications onboard MAVs in ex-
periments with both autonomous and manual flights. The pose tracking results
are compared with the ground truth data provided by an external tracking system.

1 INTRODUCTION

Micro aerial vehicles (MAVs) are potentially able to efficiently navigate in complex 3D
environments with different types of terrains, which might be inaccessible to ground
vehicles. A basic requirement for MAVs to autonomously operate in such environments
is robust pose tracking, which is still a challenging task when the environment is un-
known. Meanwhile, mapping the environment can provide support to path planning for
safe autonomous navigation. Recently, more focus has been on using onboard visual
solutions to address these issues, especially using visual simultaneous localization and
mapping (SLAM) systems, duo to the advantages offered by relying on cameras: their
superior potential for environment perception, being lightweight and energy efficient
which is especially important for MAVs.

In [12], we implemented a visual SLAM system, which can utilize measurements
from multiple cameras. Those cameras looking in different directions can provide more
reliable image features for pose tracking, compared to a monocular camera. The ex-
panded field of view (FOV) of the vision system facilitates more robust pose tracking
when an MAV flies in complex environments. However, the proposed SLAM system
did not scale well for large-scale environment operations, and in such cases, will hardly
be able to build a consistent map when flying around with loops, i.e. re-visiting some
places during an exploration. In this paper, we first modify this visual SLAM system to
operate as a robust visual odometry with constant time cost in large-scale operations.



2 Shaowu Yang, Sebastian A. Scherer and Andreas Zell

Fig. 1: Our MAV platform, with two cameras mounted looking in two different direc-
tions: downward (green ellipse) and forward (red ellipse).

Our final implementation uses two cameras pointing forward and downward, respec-
tively, for the visual odometry, as shown in Fig. 1. The choice of the number of cameras
is resulted from a compromise between tracking robustness and onboard computation
capability. Furthermore, we implement an efficient back-end for loop closure detection
and correcting pose drift inherent in the visual odometry by using pose-graph optimiza-
tion (PGO). It maintains a consistent global map organized as keyframes, each of which
is associated with some map points represented using positions relative to it.

The work in [9] proposed a double-window graph structure for optimizing its global
map. Bundle adjustment within a small inner window and pose-graph optimization
within a large window are integrated within one optimization problem. In our work,
we decouple bundle adjustment and PGO into a visual odometry front-end and a sepa-
rate back-end, so that accurate pose tracking and local map can be achieved in constant
time, without losing the benefit of PGO in building a consistent global map. The robot
position and map in [5] are represented in a continuous relative representation (CRR)
framework. It allows relative bundle adjustment for map refinement and real-time loop
closure. In the global map of our SLAM system, we just keep map points in a relative
representation. Thus, they can be implicitly updated by PGO operations.

2 Robust Multi-Camera Visual Odometry

The implementation of the visual SLAM system we proposed in [12] is based on the
open source system Parallel Tracking and Mapping (PTAM) [3]. In order to achieve
real-time operation, the main idea proposed in PTAM is to split tracking and mapping
into two separate threads, which can be processed in parallel on a dual-core computer.
The first tracking thread is responsible for real-time tracking of the camera motion rel-
ative to the current map. The second mapping thread extends the map which consists of
3D point features organized in keyframes, and refines the map using bundle adjustment.

Since global bundle adjustment in PTAM is computationally intensive, we retain
only the local bundle adjustment in [12]. In this paper, we further reduce the complexity



Robust Onboard Visual SLAM for Autonomous MAVs 3

(a) (b)

Fig. 2: (a) A local map built by our dual-camera visual odometry during an exploration,
with nL = 4. Map points from the forward-looking camera are marked in red color,
and those from the downward-looking camera in blue. The trajectory of the forward-
looking camera is plotted in green. (b) A scene of the actual lab environment where this
experiment was performed, in a similar perspective.

of the SLAM system proposed in [12] by fixing the size of keyframes from each camera
to be a constant number nL, by removing the oldest keyframe when a new keyframe is
added to the map. Bundle adjustment is performed within all m · nL keyframes in a m-
camera case. This changes the dual-camera SLAM system proposed in [12] to be an
efficient constant-time visual odometry. An example map built by the visual odometry
in our dual-camera setting is shown in Fig. 2a.

3 Back-End of the SLAM System

The visual odometry only maintains a local map for pose tracking. We further imple-
ment a back-end for the SLAM system to manage and refine a global map. The back-end
mainly performs loop closure detection and pose graph optimization.

3.1 The global map representation

We use a keyframe-based global map representation proposed in [8]. It is very similar to
the one used in the original PTAM. However, we store positions of map points relative
to their associated keyframes within the global map, so that their global pose will be
implicitly updated after the keyframe poses are updated in PGO described in Sec. 3.3.
Feature descriptors, i.e. BRIEF descriptors [1], of map points and other feature corners
of a keyframe are also computed and stored in the global map to facilitate loop closure
detection.
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3.2 Loop-closure detection

Loop closures provide additional pose constraints (edges) to the pose graph. It is of vital
importance for correcting pose drift and building a consistent map during explorations
in large-scale environments. We detect the following two types of loop closures.

Appearance-based large loop closure A hierarchical Bag-of-Word method developed
in [2] is used for large loop closure detection. The word/feature vocabulary used in our
system is trained off-line using a large number of images taken from different environ-
ments. After a large loop is detected between the current keyframe KA and a previous
keyframeKB, we match feature corners inKA to map points measured inKB to retrieve
2D-3D correspondences. If there are enough 2D-3D correspondences, we estimate the
relative pose EAB between these two keyframes. This can be done efficiently using a
P3P plus RANSAC method and further refining the result by robust optimization which
minimizes 2D reprojection errors of all inlier correspondences. Then the edge EAB is
added to the pose graph. We do not compute the otherwise relative pose EBA, since we
expect that the keyframe KA would have significant pose drift relative to KB, and thus
positions of map points measured in KB should be trusted.

Local loop closure A potential local loop closure can be detected by trying to register
the current keyframeKA to its best neighborKB (in the sense of co-visibility of common
features) within a certain geometric distance range, and estimating their relative pose in
a way similar to the method we used after an appearance-based loop closure is detected.
In this case, we compute both EAB (from 2D-3D correspondences matching feature
corners in KA to map points measured in KB) and EBA (from 2D-3D correspondences
matching feature corners in KB to map points measured in KA). We expect EAB and
EBA to agree with each other if a true local loop closure has been detected, as proposed
in [8].

3.3 Adaptive-window pose-graph optimization

We apply pose-graph optimization at each time when a new keyframe is added to the
global map, and we adaptively define a portion of the whole global graph to be opti-
mized depending on whether new edges are added from loop closures.

The graph structure For the purpose of PGO, the graph structure definition of our
SLAM system is straightforward: It consists of a set of keyframe-pose vertices (Vi)
and relative edges (Ei j) describing the relative pose-pose constraints (Ei j) among those
vertices. Each vertexVi stores an absolute pose Ei of its corresponding keyframeKi in
the world frame of the SLAM system. The edges consist of constraints obtained from
the bundle adjustment in the visual odometry and the two types of loop closures.

We notice that each bundle adjustment operation in the visual odometry produces
pose constraints among all nL keyframes in the local map. When a new keyframe Kn is
added to the local map of the visual odometry, the oldest keyframe Kr will be removed
before the next bundle adjustment operation. As a result, poses of the remaining nL −1
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Fig. 3: Edges added to the pose graph after a new keyframe Kn is added, in the case of
four keyframes involved in bundle adjustment. Edge Er2 and Er3 will also be added to
the graph before Kr is removed from the local map. Edge E12 and E23 will be replaced
by new constraints (in red) after a new bundle adjustment operation.

keyframes will be re-adjusted during the next bundle adjustment step without consid-
ering the pose constraints to Kr. This means that pose constraints between Kr and the
other nL−1 nodes may actually contain useful information and should be considered in
PGO. Thus, we not only add pose constraints among consecutive keyframes to the pose
graph, but also add those between Kr and all other keyframes within the current local
map, as depicted in Fig. 3.

Defining the sub-graph for optimization In PGO, we always consider a window of
the whole pose graph G to be adjusted. We perform uniform-cost search for choosing
sub-graph vertices, beginning with the latest added vertex. The cost is measured by geo-
metric distances among vertices. The sub-graph to be adjusted (denoted as Gs) consists
of all those sub-graph vertices and constrains among them. We define the size of the
sub-graph vertices in the following adaptive way depending on whether there is a loop
closure been detected: During regular exploration of the SLAM system without loop
closure been detected, only a relatively small window (with no more than ns vertices)
of the whole pose graph is to be adjusted. When a loop closure between two keyframes
is detected, an edge between their corresponding vertices will be added to the pose
graph. Then we expand the graph window Gs to contain a large number of vertices until
it has included all vertices in the detected loop or a maximal number (nm) of vertices.

Pose-graph optimization Given a n-vertices sub-graph Gs we previously defined, the
pose-graph optimization is to minimize the following cost function:

F(E) =
∑
EGs

∆ET
i jΩi j∆Ei j, (1)

with respect to all vertex poses E = (E1,E2, ...,En), where EGs contains all edges in Gs,
∆Ei j := log(Ei j · E−1

j · Ei) is the relative pose error in the tangent space of SE(3) and
Ωi j is the information matrix of the pose constraint Ei j. We estimate Ωi j coarsely as a
diagonal matrix in a way proposed in [9], with the rotation component to be a constant
and the translation component to be proportional to the translation ti j normalized by the
average scene depth. Here, ti j is the translation elements of Ei j.
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Fig. 4: (a) the mapping thread of the visual odometry, and (b) the back-end thread of
the SLAM system. Abbreviations: KF (keyframes), L-map (local map), G-map (global
map), and LC (loop closure).

4 Implementation

Our visual SLAM system mainly consists of three threads: two threads for the visual
odometry, and a third thread working for the back-end. The mapping thread of the visual
odometry manages a local map and handles most of the interactions with the back-end.
The global map and the pose graph is managed by the back-end thread. A general view
of operations of the mapping thread and the back-end is illustrated in Fig. 4. In this
section, we mainly present more details about the modifications made to the visual
odometry for interactions with the back-end.

4.1 The visual odometry

Automatic initialization The visual odometry is initialized in the same way as we did
in [12], with a circular pattern with known size. The downward camera C1 is responsible
for the initialization, which is done during the takeoff phase of the MAV.

Motion-model update of the tracker In the tracking thread, we assume a slowly
descending velocity model of the cameras. In each tracking process, we estimate a
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prior pose Ep of the camera C1 as the initial guess in the pose optimization, based on
the camera velocity vc and the camera pose El in the last tracking process. Once the
local map is updated by the mapping thread according to the updated global map, we
also need to update the prior estimation Ep to avoid tracking failure. We simply retain
the velocity vc unchanged. However, we update Ep by assuming a constant relative pose
Eip to its neighboring keyframeKi. Thus, we have the new prior pose E′p = Ep ·E−1

i ·E
′
i ,

where Ei and E′i are respectively the poses of Ki before and after the local map update.

Adding local map to the back-end We add the local sub-map (in the form of keyframes)
built from images of one specific camera to the back end to form the global map. In this
paper, we set this camera to be the forward-looking camera C2. There are three reasons
for this decision: First, since the dual cameras are rigidly connected, pose constraints
of one camera are sufficient for pose-graph optimization. Second, we mainly use our
MAV in low-altitude applications. Thus, we expect more interesting views taken from
the forward-looking camera, which will be used for loop closure detection. Third, this is
again a compromise for real-time performance: Keyframes from the downward-looking
camera might later be included in the global map if the onboard computation capability
improves.

Removing old keyframes of the local map If the number of keyframes from camera
Ci exceeds nL after a new keyframe is added to the local map, we remove the oldest
keyframeK0 from Ci. Before that, we first update the data association of the map points
measured by K0. Each keyframe Ki is associated with some map points p j. We call Ki
the source keyframe of p j since it was used to triangulate p j together with an earlier
keyframe. WhenKi should be removed, we only remove those map points which are not
measured by any other keyframe in the local map. Other map points could be important
for later pose tracking. If p j is measured by another keyframeKm, we transfer its source
keyframe identity toKm, and update its related data with the measurement inKm, which
will be used in pose tracking. Meanwhile, we mark p j indicating that it has been sent
to the global map already, in order to avoid re-sending it with Km in the future.

Updating the local map After each pose-graph optimization process, we update the
local map according to the global map, including updating keyframe poses and their
measured map point poses. Here, we distinguish keyframe K1 j, j ∈ {1,2, ...,nL} from
the downward-looking camera C1 and keyframe K2 j, j ∈ {1,2, ...,nL} from the forward-
looking camera C2. We assume that the pose of K2 j is identical to the pose of its cor-
responding keyframe in the global map, while the K1 j pose is updated by assuming
a calibrated rigid transform to K2 j. Since the map points in the local map are stored
with absolute coordinates, their positions need to be updated individually. We do this
by assuming unchanged relative translations to their current source keyframe.

4.2 The back-end

The back-end thread runs in an endless loop as illustrated in Fig. 4b. It is activated
whenever a new keyframe is added to the waiting queue of the global map by the map-
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Table 1: MAV pose RMSEs in the autonomous flight (Auto) and the manual flight
(Manual) experiments using the proposed visual SLAM system, and using only the
visual odometry (VO), with position errors in millimeters and attitude errors in degrees.

RMSEs x y z 3D roll pitch yaw
Auto 103.0 117.0 82.7 176.5 1.70 1.45 0.80
Manual 50.6 89.9 114.9 150.4 2.06 1.34 1.92
VO 69.2 168.2 106.7 206.9 2.37 1.35 2.28

ping thread. After the PGO is done, the global map is updated according to the pose
graph: The keyframe poses are updated by directly copying the corresponding vertex
poses of the graph, leaving the associated map points only implicitly updated. The im-
plementation of our PGO is based on the open source library g2o described in [4].

5 Experiments

In this section, we evaluate our visual SLAM system in an indoor environment (our
robotics laboratory), as shown in Fig. 2b. An external tracking system available here
provides accurate measures of the pose tracking errors of our onboard SLAM system.

5.1 Experimental setup

Quadrotor MAV platform Our MAV is based on the open source and open hardware
quadrotor platform described in [6], as shown in Fig. 1. The onboard computer features
an Intel Core 2 Duo 1.86GHz CPU, 2 GB DDR3 RAM and a 32GB SSD. The pxIMU
inertial measurement unit and autopilot board mainly consists of a microcontroller unit
(MCU) for position and attitude control, and sensors including a tri-axis accelerometer
and a tri-axis gyroscope. The two synchronized cameras utilized on our MAV are two
PointGrey Firefly MV monochrome cameras, each of which weighs only 37 grams.
Each camera has an image resolution of 640×480 pixels, a maximum frame rate of
60 fps, and both lenses we use have viewing angles of approximately 90 degrees. The
extrinsic parameters of the two cameras are calibrated off-line as we described in [12].

Quadrotor controller We use a nested PID pose controller and PD trajectory controller
described in previous work [11] for autonomous navigation of our quadrotor. Those
controllers are implemented based on the work in [7]. The 3D position estimates and
the yaw angle estimates of the visual SLAM system are fed to the position controller
at frame rate. The attitude controller runs at a frequency of 200 Hz, using the roll and
pitch estimates provided by the IMU.
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Fig. 5: The pose tracking results during the autonomous flight, compared with ground
truth data. Pose corrections after loop closures been detected and PGO been processed,
are marked with black crosses.

5.2 Enabling autonomous navigation

In this experiment, we demonstrate the efficiency of our SLAM system to enable au-
tonomous navigation of our MAV. The MAV autonomously navigates along a prede-
fined rectangular path with a height of 1.2 m (plotted in cyan in Fig. 5b) in a clockwise
direction, taking off above the origin of the world frame and landing on the top-right
corner. It turns 90 degrees at each corner in order to head to the forward direction.

Fig. 5 shows the pose tracking results of the SLAM system (SLAM) compared
with the ground truth data provided by the external tracking system (ETS). The visual
odometry slowly drifts during explorations. However, the local-map update process will
correct the drift after a loop closure is detected and the pose-graph optimization is per-
formed. We can clearly recognize the effect of such corrections in Fig. 5: The black
crosses are marked to the pose tracking results after local-map updates. The first loop-
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Fig. 6: MAV pose-estimation results using the proposed SLAM system and visual
odometry during the manual flight compared with ground truth data: (a) MAV posi-
tion on xW − yW plane, (b) the translation errors. Pose corrections after loop closures
been detected and PGO been processed, are marked with black crosses.

closure provides an obvious correction to the pose tracking of the visual odometry.
Fig. 5c shows the 3D translation errors of the pose tracking results compared with the
ground truth data during the flight. Those very short horizontal lines in Fig. 5c are re-
sulted from missing ground truth data during those periods of time, when the MAV is
not flying in the effective field of view of the external tracking system. The RMSEs of
the 6DOF pose estimates of the SLAM system to the ground truth data during the whole
flight are listed in Tab. 1 (in the row of Auto).

Pose estimates of a visual odometry are subjected to drift during explorations. In our
case, two metric scale related issues which contribute to the pose drift should be noted:
First, although dual cameras are used in our visual odometry, they have no overlap in
their respective fields of view. Thus, the visual odometry cannot make stereo triangula-
tion to track the metric scale of the environment, which results in scale drift in the pose
estimation. Second, the accuracy of our automatic initialization module mentioned in
Sec. 4.1 could be affected by the vibration of the MAV. The initialization errors in the
metric scale and the attitude will be accumulated in the whole flight trajectory of the
MAV. Another factor which could affect the pose tracking accuracy of the visual odom-
etry is the errors in extrinsic calibration of the dual cameras.

5.3 Further evaluations with manual flight data

We manually control the quadrotor to fly in a similar way as we have done in Sec. 5.2,
and record all necessary onboard data in a ROS-bag file. We process this logfile in post-
processing on the onboard computer, to gain more insights into the performances of
both the visual odometry and the back-end of the SLAM system. The results of this
experiment are shown in Fig. 6 and Fig. 7.
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Fig. 7: A view of the built map of the visual SLAM system during a manual flight in the
lab. The grid cell size is 1m×1m. The global map points are shown in grey-scale. The
vertices of the pose graph are illustrated with red tri-axes, and the edges are plotted in
green.

Fig. 6a provides a top view of the MAV trajectory on xW − yW plane. Here, we
have processed the ROS-bag file twice using our SLAM system: firstly, using the full
SLAM system (SLAM), and secondly, using only the visual odometry (VO) without the
back-end. The results of the two processes are compared with pose estimates from the
external tracking system (ETS). Fig. 6b shows the position estimation errors of these
two processes. Without the back-end, the visual odometry would result in larger pose
drift. Loop-closure detection of the back-end can obviously benefit the pose tracking
with drift corrections. RMSEs of the pose tracking results of the two processes are
listed in Tab. 1 (in the row of Manual and the row of VO, respectively).

Fig. 7 illustrates a view of the resulting global map of the SLAM system, with
references of the real-world pictures. In this figure, we can find the pose graph with
nodes (keyframe poses) and edges (in green), and map points at their absolute positions
which are only computed for visualization purpose.

6 Conclusions and Discussions

Our proposed visual SLAM system utilizes dual cameras to achieve a constant-time
visual odometry, which can provide robust pose tracking for autonomous navigation
of our MAV. The back-end of the SLAM system performs loop-closure detection and
adaptive-window pose-graph optimization to correct pose drift of the visual odometry
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and to maintain a consistent global map. Autonomous navigation of an MAV following
a predefined path has been achieved using the proposed visual SLAM system.

In general, doing PGO in the Similarity space Sim3, instead of SE3, can provide
better scale corrections to the SLAM system [10], which could be a near future work. A
map merging strategy would also be considered to achieve a more consistent map after
loop closures. Then the performance of the resulting visual SLAM system in large-
scale outdoor environments would be evaluated in the future. Currently, the keyframes
and map points in the global map are not used in the visual odometry. It would be
worthwhile to investigate how to more efficiently merge the back-end with the visual
odometry, so that the updated global map can be directly used by the visual odometry.
Additional sensor which can provide metric scale measurements could be added to the
system to tackle the scale drift issue before a loop is detected, and to initialize the metric
scale of the SLAM system.
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