Skip to main content

Human-Robot Collaborative Remote Object Search

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 13

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 302))

Abstract

Object search is one of the typical tasks for remotely controlled service robots. Although object recognition technologies have been well developed, an efficient search strategy (or viewpoint planning method) is still an issue. This paper describes a new approach to human-robot collaborative remote object search. An analogy for our approach is ride on shoulders; a user controls a fish-eye camera on a remote robot to change views and search for a target object, independently of the robot. Combined with a certain level of automatic search capability of the robot, this collaboration can realize an efficient target object search. We developed an experimental system to show the feasibility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the operator was able to see which table the robot is looking at through a fish-eye camera.

References

  1. A.A. Makarenko, S.B. Williams, F. Bourgault, and H.F. Durrant-Whyte. An Experiment in Integrated Exploration. In Proceedings of 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 534–539, 2002.

    Google Scholar 

  2. R. Martinez-Cantin, N. de Freitas, R. Brochu, J. Castellanos, and A. Doucet. A Bayesian Exploration-Exploitation Approach for Optimal Online Sensing and Planning with a Visually Guided Mobile Robot. Autonomous Robots, Vol. 27, pp. 93–103, 2009.

    Article  Google Scholar 

  3. Y. Ye and J.K. Tsotsos. Sensor Planning for 3D Object Search. Computer Vision and Image Understanding, Vol. 73, No. 2, pp. 145–168, 1999.

    Article  Google Scholar 

  4. K. Shubina and J.K. Tsotsos. Visual Search for an Object in a 3D Environment Uing a Mobile Robot. Computer Vision and Image Understanding, Vol. 114, pp. 535–547, 2010.

    Article  Google Scholar 

  5. F. Saidi, O. Stasse, K. Yokoi, and F. Kanehiro. Online Object Search with a Humanoid Robot. In Proceedings of 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1677–1682, 2007.

    Google Scholar 

  6. A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt. Search in the Real World: Active Visual Object Search Based on Spatial Relations. In Proceedings of 2011 IEEE Int. Conf. on Robotics and Automation, pp. 2818–2824, 2011.

    Google Scholar 

  7. H. Masuzawa and J. Miura. Observation Planning for Efficient Environment Information Summarization. In Proceedings of 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5794–5780, 2009.

    Google Scholar 

  8. H. Masuzawa and J. Miura. Observation Planning for Environment Information Summarization with Deadlines. In Proceedings of 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 30–36, 2010.

    Google Scholar 

  9. M. Boussard and J. Miura. Observation planning for object search by a mobile robot with uncertain recognition. In Proceedings of the 12th Int. Conf. on Intelligent Autonomous Systems, 2012. F3B.5 (CD-ROM).

    Google Scholar 

  10. B. Bonet and H. Geffner. Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming. In Enrico Giunchiglia, Nicola Muscettola, and Dana S. Nau, editors, Proceedings 13th Int. Conf. on Automated Planning and Scheduling (ICAPS-2003), pp. 12–31. AAAI, 2003.

    Google Scholar 

  11. T. Fong, C. Thorpe, and C. Baur. Advanced Interfaces for Vehicle Teleoperation: Collaborative Control, Sensor Fusion Displays, and Remote Driving Tools. Autonomous Robots, Vol. 11, pp. 77–85, 2001.

    Article  MATH  Google Scholar 

  12. S. Suzuki. A Vision System for Remote Control of Mobile Robot to Enlarge Field of View in Horizontal and Vertical. In Proceedings of 2011 IEEE Int. Conf. on Robotics and Biomimetics, pp. 8–13, 2011.

    Google Scholar 

  13. K. Saitoh, T. Machida, K. Kiyokawa, and H. Takemura. A 2D-3D Integrated Interface for Mobile Robot Control using Omnidirectional Images and 3D Geometric Models. In Proceedings of 2006 IEEE/ACM Int. Symp. on Mixed and Augmented Reality, pp. 173–176, 2006.

    Google Scholar 

  14. N. Shiroma, N. Sato, Y. Chiu, and F. Matsuno. Study on Effective Camera Images for Mobile Robot Teleoperation. In Proceedings of 13th IEEE Int. Workshop on Robot and Human Interactive Communication, pp. 107–112, 2004.

    Google Scholar 

  15. T. Fong, C. Thorpe, and C. Baur. A Safeguarded Teleoperation Controller. In Proceedings of 2001 IEEE Int. Conf. on Advanced Robotics, 2001.

    Google Scholar 

  16. T. Sawaragi, T. Shiose, and G. Akashi. Foundations for Designing an Ecological Interface for Mobile Robot Teleoperation. Robotics and Autonomous Systems, Vol. 31, pp. 193–207, 2000.

    Article  Google Scholar 

  17. N. Ando, T. Suehiro, and T. Kotoku. A Software Platform for Component Based RT System Development: OpenRTM-aist. In Proceedings of the 1st Int. Conf. on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR ’08), pp. 87–98, 2008.

    Google Scholar 

  18. OpenRTM. http://openrtm.org/openrtm/en/.

  19. D.G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.

    Article  Google Scholar 

  20. Point Cloud Library. http://pointclouds.org/.

  21. OpenCV. http://opencv.org/.

  22. Y. Ueno, T. Ohno, K. Terashima, H. Kitagawa, K. Funato, and K. Kakihara. Novel Differential Drive Steering System with Energy Saving and Normal Tire using Spur Gear for Omni-directional Mobile Robot. In Proceedings of the 2010 IEEE Int. Conf. on Robotics and Automation, pp. 3763–3768, 2010.

    Google Scholar 

  23. MRPT. http://www.mrpt.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Miura, J., Kadekawa, S., Chikaarashi, K., Sugiyama, J. (2016). Human-Robot Collaborative Remote Object Search. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08338-4_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08337-7

  • Online ISBN: 978-3-319-08338-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics