N

HAL

open science

Default Reasoning Implementation in CoGui

Patrice Buche, Jérome Fortin, Alain Gutierrez

» To cite this version:

Patrice Buche, Jérome Fortin, Alain Gutierrez. Default Reasoning Implementation in CoGui. ICCS
2014 - 21st International Conference on Conceptual Structures, Jul 2014, Iasi, Romania. pp.118-129,

10.1007/978-3-319-08389-6_ 11 . lirmm-01092160

HAL Id: lirmm-01092160
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01092160

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01092160
https://hal.archives-ouvertes.fr

Default Reasoning Implementation in CoGui

Patrice Buche!, Jérdme Fortin2, and Alain Gutierrez®
1 INRA IATE, LIRMM GraphlK, France

Patrice.Buche@supagro.inra.fr

2 Université Montpellier II

IATE/LIRMM GraphlK, France

fortin@polytech.univ-montp2. fr

3 CNRS LIRMM, France

alain.gutierrez@lirmm. fr

Abstract. This is an application paper in which we propose to present the ac-
tual implementation of default reasoning under conceptual graph formalism using
CoGui. CoGui is a free graph-based visual tool, developed in Java, for building
Conceptual Graph knowledge bases. We present the extension of this application
to define and represent default CG rules (a CG-oriented subset of Reiter’s default
logics) and how to use these rules in skeptical or credulous reasoning.

1 Introduction

Default conceptual graph rules have been introduced in [1] in order to model expert
knowledge, especially in agronomy applications. Default CG rules encode a subset of
Reiter’s default logic [2] and deal with knowledge of the form "if an hypothesis is
proved true, a conclusion is generally true unless something that we know prevent us
to infer this conclusion. Dealing with default is a kind of non monotonic reasoning
because adding some new information to a knowledge base may prevent to apply some
default.

The contribution of this paper is the presentation of the actual implementation of de-
fault reasoning under conceptual graph formalism using CoGui. CoGui is a free graph-
based visual tool, developed in Java, for building Conceptual Graph knowledge bases.

The paper is organized as follows : Section 2 introduces classical notions of CG and
CG rule. It gives some clues about their implementation in CoGui. Section 3 recalls
basic definition of Reiter’s defaults and introduces conceptual default rules. Section 4
is devoted to the presentation of the deduction algorithm using default CG rules.

2 Conceptuals Graphs in Cogui

In this section, we recall main notations and results required for the default CG rules
used in this paper. In Section 2.2, we present the simple CGs of [3]. In Section 2.3, the
CG rules of [4].

For each of these subsections we present how CoGui is designed to model these
different notions. Figure 1 shows the structure of Cogui packages. CoGui is composed
of four different layers associated with four different eclipse projects :

Default Reasoning Implementation in CoGui

— the project fr.lirmm.graphik.cogui.core contains the model of knowledge represen-
tation, and all algorithms that permit to explore this model. It also contains tools to
serialize data objects in xml, and to transpose a model in Datalog+ [5,6];

— the project fr.lirmm.graphik.cogui.rdf permits to make import and export from the
CoGui internal model to RDF(S) and an OWL fragment [7];

— the project fr.lirmm.graphik.cogui.edit contains the user interface;

— the project fr.lirmm.graphik.cogui.appli is the upper layer of CoGui containing its
entry point in the CoGuiApplication Class.

fr.lirmm.graphik.cogui

appli.stda edit
action export
stda view
prefs
edit dialog
core
project
project 5
io model edition rdf =
o
factory
arrangement
solver edition g
gobject util

il ;
u assistant

solver

Fig. 1. Packages Structure of CoGui

2.1 Support

Syntax. With the simple CGs of [3], a knowledge base is structured into two objects:
the vocabulary (also called support) encodes hierarchies of types, and the conceptual
graphs (CGs) themselves represent entities and relations between them. Simple CGs
are extended to handle conjunctive types, as done in [8].

Definition 1 (Vocabulary). We call vocabulary a tuple V = (C,R = (R1,...,Rx),
My, Mq) where C is a partially ordered set of concept types that contains a greatest
element T, each R; is a partially ordered set of relation types of arity i, M is a set
of individual markers, and M is a set of generic markers. Note that all these sets are
pairwise disjoint, and that we denote all the partial orders by <.

Definition 2 (Conjunctive types). A conjunctive concept type over a vocabulary V is
asetT = {t1,...,tp} (thatwe cannote T = t,M.. .Mty of arity p. If T = {t1,...,t,}
andT" = {t},...,t,} are two conjunctive concept types, then we also note T' < T" <
Vt; € T',3t; € T such thatt; < t.

P. Buche, J. Fortin, and A.

[core.mod,

Gutierrez

47 @ DefaultRule

© KnowledgeBase

® BannedTypes @ CoguiConstants
79

© Vocabulary

8

| @ DefaultProjection @ DataTypes |

© Module

O Projection

TR e

Fig. 2. Core Model of CoGui

Implementation. Figure 2 presents the core model of CoGui. All graphs are created in
CoQGui in a structure that use the JGraphT 0.8 Java Library [9]. Concept node hierarchy,
relation node hierarchy are stored as oriented graphs. A list of individual markers asso-

ciated with their privilege types is maintained. Figure 3 shows a concept type hierarchy
in CoGui.

Top
Bird Animal
Penguin Ostrich

Fig. 3. A concept node hierarchy represented in CoGui

2.2 Simple Conceptual Graphs

A simple conceptual graph, also often called fact is defined as follows :

Definition 3 (Simple CGs). A simple CG is a tuple G = (C, R,~, \) where C and R
are two finite disjoint sets (concept nodes and relations) and y and X\ two mappings:

- v : R — C7T associates to each relation a tuple of concept nodes y(r) =
(c1,...,ck) called the arguments of r, v;(r) = ¢; is its ith argument and
degree(r) = k.

— A maps each concept node and each relation to its label. If c € C is a concept node,
then A(c) = (type(c), marker(c)) where type(c) is a conjunctive concept type and

Default Reasoning Implementation in CoGui

marker(c) is either an individual marker of M or a generic marker of Mg. If
r € R is a relation and degree(r) = k, then \(r) is a relation type of arity k.

A simple CG is said to be normal if all its concept nodes have different markers. Any
simple CG G can be put into its normal form nf(G) in linear time.

Semantics. We associate a first order logics (FOL) formula ¢(V) to a vocabulary V),
and a FOL formula ¢(G) to a simple CG G. These formulae are obtained as follows:

Interpretation of a Vocabulary. LetV = (C,R = (R1,...,Ri), M1, Mg) be a vo-
cabulary. We can consider each concept type of C as a unary predicate name, each
relation type of R; as a predicate name of arity 4, each individual marker of M as a
constant, and each generic marker of M as a variable. For each pair (¢,¢') of con-
cept types of C such that ¢ < ¢/, we have a formula ¢((¢,t')) = Va(t(z) — t'(z)).
For each pair (¢,¢') of relation types of arity ¢ such that ¢ < ¢/, we have a formula
o((t,t') = Vay .. Vo (t(z1,...,z;) — t'(x1,...,2;)). Then the FOL interpretation
@(V) of the vocabulary V is the conjunction of the formulae ¢((¢,t’)), for every pair of
types (¢,¢') such that ¢/ < ¢

Interpretation of a Simple CG. Let G = (C,R,v,) be a simple CG. We can as-
sociate a formula to each concept node and relation of G: if ¢ € C and type(c) =
t1 M...MNtg, then ¢(c) = ti(marker(c)) A ... A ty(marker(c)); and if » € R, with
~v(r) = (c1,...,¢q) and A(r) = ¢, then ¢(r) = t(marker(cy), ..., marker(c,)). We
note ¢(G) = A cc ¢(c) A\, cg ¢(r). The FOL formula ¢(G) associated with a sim-
ple CG is the existential closure of the formula ¢(G).

Implementation. Simple CG are of course stored as graphs in CoGui. Each node of
a Fact graph has a given label. Depending on the type of the considered node, two
different types of label are used. For relation nodes, it is enough to label the node by
its relation name. For concept nodes, type and marker are needed. A marker can be an
individual marker or a generic marker. In a given fact Graph, each generic marker must
have a unique name. In order to perform reasoning, one extra attribute is given for each
node (concept and relation nodes). This attribute permit to identify uniquely any node
of a CoGui project, stored in any kind of graphs (Support, Simple CG, Rules...).

2.3 Conceptual Graph Rules

CG rules form an extension of CGs with knowledge of form “if hypothesis then conclu-
sion”. Introduced in [10], they have been further formalized and studied in [4].

Syntax. A usual way to define CG rules is to establish co-reference relations between
the hypothesis and the conclusion. We have used here instead named generic markers:
generic nodes with same marker representing the same entity.

Definition 4 (CG rule). A conceptual graph rule, defined on a vocabulary V, is a pair
R = (H,C) where H and C are two simple CGs, respectively called the hypothesis
and the conclusion of the rule.

P. Buche, J. Fortin, and A. Gutierrez

Semantics. We present here the usual ¢ semantics of a CG rule, and recall the equiva-
lent semantics &/ using function symbols introduced in [11]. This equivalent semantics
makes for an easier definition of default rules semantics: since default rules are com-
posed of different formulas, we cannot rely upon the quantifier’s scope to link variables,
and thus have to link them through functional terms.

Let R = (H,C) be a CG rule. Then the FOL interpretation of R is the formula
D(R) = Vo1 .. Ve (o(H) — (Fyr ... Jyeo(C))), where z1,. ..,z are all the vari-
ables appearing in ¢(H) and y1, . . ., y, are all the variables appearing in ¢(C) but not
in (H). If R is a set of CG rules, then ®(R) = A\ . P(R).

As an alternate semantics, let G be a simple CG and X be a set of nodes. We denote
by F' = {f1,..., fp} the set of variables associated with generic markers that appear
both in G and in X. The formula ¢§((G) is obtained from the formula ¢(G) by replac-
ing each variable y appearing in ¢(G) but not in F’ by a functional term f&(f1,..., fp).
Then the FOL interpretation (with function symbols) of arule R = (H, C) is the for-
mula &/ (R) = Va1 ... Vop(o(H) — gbg((C)) where X is the set of nodes appearing
in H.If R is a set of CG rules, then &/ (R) = A pcr ¢/ (R). Note that this semantics
translates in a straightforward way the skolemisation of existentially quantified vari-
ables.

Implementation. A rule is stored in CoGui as a single bi-colored graph with two
connected components :

— one component stands for the hypothesis of the rule and is tagged by one color,
— the second component models the conclusion of the rule, and is tagged with the
other color.

As some nodes of the hypothesis need to correspond to some nodes of the conclusion,
a list of coreference links is needed for each rule. The justification and the conclusion
must be two connected component. This choice have been made in CoGui in order to
optimize some graph operations.

Remark that it wouldn’t be sufficient to model a rule by a single bi-colored con-
nected graph, because this representation would not permit to specialize (according to
the concept type hierarchy) in the conclusion any node of the Hypothesis. For example,
one can express that each Animal that flies is a Bird. This rule is shown in Figure 4.

Computing Deduction. We present here the forward chaining mechanism used to
compute deduction with CG rules. In general, this is an undecidable problem. The
reader can refer to [12] for an up-to-date cartography of decidable subclasses of the
problem.

Definition 5 (Application of a rule). Let G be a simple CG, R = (H,C) be a rule,
and 7 be a homomorphism from H to G. The application of R on G according to 7
produces a normal simple CG «(G, R,) = nf(G ® C;) where:

— Cy is a simple CG obtained as follows from a copy of C: (i) associate to each
generic marker x that appears in C' but not in H a new distinct generic marker
o(x); (ii) for every generic concept node c of C whose marker x does not appear

Default Reasoning Implementation in CoGui

Hypothesis Conclusion

Anirgal : * [O-10 Bird : *

Fig. 4. A rule that specialize a node of the hypothesis

in H, replace marker(c) with o(x), and (iii) for every generic concept node c of C,
if marker(c) also appears in H, then replace marker(c) with marker(m(c)).

— the operator ® generates the disjoint union of two simple CGs G and G': it is the
simple CG whose drawing is the juxtaposition of the drawings of G and G'.

Theorem 1. Let G and Q) be two simple CGs, and R be a set of CG rules, all defined
on a vocabulary V. Then the following assertions are equivalent:

— there exists a sequence Go = nf(G), G1, . .., G, of simple CGs such that:
()V1 < i< n,thereisarule R = (H,C) € R and a homomorphism w of H to
Gi_1 such that G; = a(Gi_l, R, 7T),'
and (ii) there is a homomorphism from Q to G,,.

Note that the forward chaining algorithm that relies upon the above characterization
is ensured to stop when the set of rules involved is range restricted, i.e. their logical
semantics @ does not contain any existentially quantified variable in the conclusion
(see [13] for more details about tractable cases).

The “functional semantics” can provide us with an alternate rule application mecha-
nism o . Let us begin by “freezing” the graph G, e.g. by replacing each occurrence of
a generic marker by a distinct individual marker that not appears yet in G. Then, when
applying a rule R on G (or a graph derived from G) according to a projection m, we
consider the formula ¢/ (R) associated with R. Should the application of R = (H, C')
produce a new generic node ¢ from the copy of a generic node having marker y, we con-
sider the functional term f(z1,. .., x)) associated to the variable y. Then the marker
of ¢ becomes f&(m(z1), ..., m(zx)). Thanks to the previous theorem, o/ makes for an
equivalent forward chaining mechanism, that has an added interest. It allows to have
a functional constant identifying every concept node generated in the derivation. This
feature will be used to explain default rules reasonings in an easier way than in [1].

3 Default Rules

3.1 Default CG Rules

A Brief Introduction. Let us recall some basic definitions of Reiter’s default logics.
For a more precise description and examples, the reader should refer to [14,2].

P. Buche, J. Fortin, and A. Gutierrez

Definition 6 (Reiter’s default logic). A Reiter’s default theory is a pair (A, W) where
W is a set of FOL formulae and A is a set of defaults of form § = a(#): (7(%) ’ﬂ"(?),

n >0, where 7 = (x1, -+ ,xp) is a tuple of variables, a(?), 51(7) and 7(7) are
FOL formulae for which each free variable is in 2.

The intuitive meaning of a default & is “For all individuals (21, - -- ,zx) , if ()
is believed and each of 31(7’),--- , 8,() can be consistently believed, then one is
allowed to believe (7). a(@) is called the prerequisite, 3;(@') are called the justi-
fications and () is called the consequent. A default is said closed if o(7"), ()
and () are all closed FOL formulae.

Intuitively, an extension of a default theory (A, W) is a set of formulae that can be
obtained from (A, W) while being consistently believed. More formally, an extension
E of (A, W) is a minimal deductively closed set of formulae containing W such that
for any O‘V—B € Aifo € Fand -8 ¢ E, then v € E. The following theorem provides
an equivalent characterization of extensions that we use here as a formal definition.

Theorem 2 (Extension). Let (A, W) be a closed default theory and E be a set of
closed FOL formulae. We inductively define Ey = W and for all i > 0, E;y; =
Th(E) U {y| ¥ € A a € Ejand —B1,- -+ , =B, ¢ E}, where Th(E;) is the
deductive closure of E;. Then E is an extension of (A, W) iff E = U2, E;.

Note that this characterization is not effective for computational purposes since both E;
and F = U2, F; are required for computing F; 1.
The following reasoning tasks come with Reiter’s Default Logic:

— EXTENSION: Given a default theory (A, W), does it have an extension?

— SKEPTICAL DEDUCTION: Given a default theory (A, W) and a formula @, does @
belong to all extensions of (A, W)? In this case we note (A, W) Fg Q.

— CREDULOUS DEDUCTION: Given a default theory (A, W) and a formula @, does
@ belong to an extension of (A, W)? In this case we note (A, W) Fo Q?

Syntax of Default CGs

Definition 7 (Default CGs). A default CG, defined on a vocabulary V), is a tuple D =
(H,C, J1,...,Jx) where H, C, Jy,..., and Jy are simple CGs respectively called the
hypothesis, conclusion, and justifications of the default.

Semantics. The semantics of a default CG D = (H,C, J1, ..., Ji) is expressed by a
closed default A(D) in Reiter’s default logics.

O(H) : ~$%(C), by (1), iy ()
o%(0)
where X is the set of nodes of the hypothesis H and Y is the set of nodes of the

conclusion C. If D = (H,C, J1,...,J;) is a default, we note std(D) = (H,C) its
standard part, which is a CG rule.

A(D) =

Default Reasoning Implementation in CoGui

Implementation. A default rule is stored as a single multi—colored graph. As for clas-
sical rules, one color is needed for the hypothesis, one for the conclusion, and n other
colors are used to tag each of the n justifications. Figure 4 shows a default rule that
means "unless a birds is known as a penguin or an ostrich, we can suppose that it flies".

-O Bird : * (O -- Ofeigia s

Fig. 5. Representation of a default rule

4 Default Reasoning with Default CG Rules in CoGui

In this section, we explain the algorithm that permits to compute deduction in the alter-
nate derivation mechanism o introduced in [11]. This mechanism is introduced for an
easier description of the sound and complete reasoning mechanism of [1]. Moreover,
this alternate derivation mechanism permits to get a strait—forward way to implement
default reasoning in CoGui. Let G and () be two simple CGs, R be a set of CG rules,
and D be a set of default CG rules, all defined over a vocabulary V. A node of the
default derivation tree DDT(K) of the knowledge base K = ((V,G,R), D) is always
labelled by a simple CG called fact and a set of simple CGs called constraints. A node
of DDT(K) is said valid if there is no homomorphism of one of its constraints or the
constraints labelling one of its ancestors into its fact. Let us now inductively define the
tree DDT(K):

— its root is a node whose fact is G and whose constraint set is empty;
- if z is a valid node of DDT(K) labelled by a fact F’ and constraints C, then
for every rule D in D, for every homomorphism 7 of the hypothesis of D into
a simple CG F’ R-derived from F,
o admits a successor whose fact is the fact of (F”, std(D),), and whose
constraints are the 7(.J;) iff that successor is valid.

Theorem 3. Let G and Q) be two simple CGs, R be a set of CG rules, and D be a set of
default CG rules, all defined over a vocabulary V. Then ®(Q) belongs to an extension
of the Reiter’s default theory ({®(V), ®(G), P(R)}, A(D)) iff there exists a node x of
DDT((V,G,R), D) labelled by a fact F such that »(V), P(F),P(R) - (Q).

P. Buche, J. Fortin, and A. Gutierrez

Intuitively, this result [1] states that the leaves of DDT(K) encode extensions of the
default. What is interesting in this characterization is that: 1) though our default CGs
are not normal defaults in Reiter’s sense, they share the same important property: every
default theory admits an extension; and 2) if an answer to a query is found in any node
of the default derivation tree, the same answer will still be found in any of its successors.

4.1 Implementation

In order to compute deduction in CoGui, a new class CoguiDefaultRuleApplyer
has been created. This class contains a list of Classical rules, a list of default rules and a
stack of j—constraints. This stack of j—constraints is used to store each justification that
has been "supposed" before applying a default. In practice, a j—constraint is stored as
any conceptual graph. Contrary to the classical constraints in conceptual graphs [13], j—
constraints need to be attached to the fact on a precise place. The semantic of a classical
constraint is the following : if a constraint C' can be projected in a graph G, then the
knowledge base K = (G, C) is inconsistent. So if a constraint contains some generic
marker, then the constraint can be projected in any place of the graph G.

When dealing with default rules, j—constraints have a different semantics. This is due
to the fact that a given justification is precisely linked to an hypothesis of a default.

Let us consider the default D = (Bird(z), fly(z), Penguin(x)). This default
means that if we find a bird in a database, then we can deduce that this bird flies unless
we know that it is a penguin. So if in a fact graph G, we find a concept node Bird(y),
associated with the generic marker y, we can try to apply the default D. After adding
the conclusion of the default, we have to keep in mind for future deduction (with classi-
cal rules or default rules) that the bird ¢ (and only this one) can not be considered in any
way as a penguin. It is not possible to use the classical constraint Penguin(x) because
it would mean that any individual can be a penguin, which is obviously not what we
want to model. So the difference between a classical constraint and a j—constraint is just
in its semantics : When adding the j—constraint Penguin(y), it just says that any node
that is labeled by the generic marker y (and only this particular generic marker) can
represent a penguin.

The main algorithm implemented in CoGui to find extensions of a given knowledge
base is based on a backtrack algorithm. We begin with an initial fact graph G, we
choose one default and one projection, we apply this default on the projection and run
a saturation round by classical rules. If no more default can be applied, no constraint is
violated and no default rule is active, the current state is an extension. Otherwise, we
continue our exploration of the default derivation tree. Once an extension is found, the
current state is saved as a new extension, and a backtrack is operated. This backtrack is
possible with the help of the reverse actions implemented in CoGui.

createJConstaint(J;,) is a procedure that creates a j—constraint by renaming
each generic marker of J; by the corresponding label of the projection 7 if the consid-
ered node is linked with the hypothesis in D, and with a new generic marker otherwise.
The procedure create AddConclusion Action permits to create a single defeasible ac-
tion that permits to add a graph (conclusion of the default) to another graph according
to a certain projection.

Default Reasoning Implementation in CoGui

Algorithm 1. Main deduction algorithm

Data: £ = ((V,G,R), D)

Result: The set of extensions of /C

begin

/+ Initialisation of global variables */
currentGraph +— G,

constraintStack +— 0;

currentStackReverseActions <+— 0

stackReverseActions +— 0;

extensionsSet +— {;

applyMaster();

Algorithm 2. applyMaster

Data: C (in), currentGraph (in/out); constraintStack (in/out); currentStackReverseActions
(in/out); stackReverseActions (in/out)

begin

rule Applied <— false;

for D= (H,C, J1,---,Jn) € Ddo

for 7 projection of H in currentGraph do

applied <— applyDe fault(D,w);

if applied then

rule Applied +— true;

A «— createSaturateAction(currentGraph, R);

applyAction(A,currentGraph);

stackReverseAction.put(reverse(A));

applyM aster();

A <— stackReverseAction.pop(A);

applyAction(A);

if not(ruleApplied) then
L extensionSet.add(New copy of current graph);

P. Buche, J. Fortin, and A. Gutierrez

Algorithm 3. applyDefault

Data: Default D, projection 7 (and currentGraph; constraintStack;
currentStackReverseActions ; stackReverseActions as (global variables)
Result: Boolean : true iff D has been applied
begin
/+ Checking justifications */
applicable <+— true;
for J; justification of D do
if ™ can be extended to project J; then
L applicable <— false;

if applicable then
for J; justification of D do
C <— createJConstraint(D, J;, 7);
L constraintStack.put(C);

A «— create AddConclusionAction(currentGraph,C, m);
applyAction(A,currentGraph);
stackReverseActions.put(reverse(A));

return frue;

else
L return false;

5 Conclusion

It is now possible to model default CG rule with CoGui and to make default reasoning.
Default CG rules model a subset of classical Reiter’s default rule, in which the conclu-
sion is always seen as an implicit justification. The reasoning implementation permit to
compute all extensions of a given knowledge base. The construction of the extension is
done by exploring the default deviation tree by a deep first search, so there is no need
to store all the derivation trees to compute deduction.

From this list of extensions it is simple to check if a fact is skeptically or credulously
entailed by the knowledge base : CoGui permits to manipulate any CoGui object with a
devoted script language. Scripts are object stored in CoGui that permit to creates easily
automatic tasks that manipulates any CoGui objects. Scripts are develloped using a
Java-like langage. This functionality has not been described in this paper in order to
focus on the default reasoning, but scripts can be easily used to perform skeptical and
credulous deduction. One further work is to directly integrate this functionality to the
CoGui native possibilities.

Default rules in CoGui are now used for some applications projects. We use it in par-
ticular to model expert knowledge in some agronomy applications [15]. In this domain,
an application called Capex (for expert capitalization) has been developed over CoGui
and its default reasoning possibilities.

Default Reasoning Implementation in CoGui

References

11.

12.

13.

14.

15.

. Baget, J.-F., Croitoru, M., Fortin, J., Thomopoulos, R.: Default conceptual graph rules: Pre-

liminary results for an agronomy application. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.)
ICCS 2009. LNCS (LNAI), vol. 5662, pp. 86-99. Springer, Heidelberg (2009)

. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81-132 (1980)
. Sowa, J.E.: Conceptual graphs for a database interface. IBM Journal of Research and Devel-

opment 20(4), 336-357 (1976)

. Salvat, E., Mugnier, M.L.: Sound and complete forward and backward chaining of graph

rules. In: Eklund, P, Ellis, G., Mann, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 248-262.
Springer, Heidelberg (1996)

. Cali, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: A family of languages for

ontology querying. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010.
LNCS, vol. 6702, pp. 351-368. Springer, Heidelberg (2011)

. Mugnier, M.-L.: Ontological Query Answering with Existential Rules. In: Rudolph, S.,

Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 2-23. Springer, Heidelberg (2011)

. Baget, J.-F., Croitoru, M., Gutierrez, A., Leclére, M., Mugnier, M.-L.: Translations between

RDF(S) and conceptual graphs. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010.
LNCS, vol. 6208, pp. 28-41. Springer, Heidelberg (2010)

. Baget, J.-F.: Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive Types for

Efficient Projection Algorithms. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003.
LNCS (LNAI), vol. 2746, pp. 229-242. Springer, Heidelberg (2003)

. Naveh, B., Contributors: Jgrapht (March 2014), http://jgrapht.org/
. Sowa, J.E.: Conceptual Structures: Information Processing in Mind and Machine. Addison—

Wesley (1984)

Baget, J.-F., Fortin, J.: Default conceptual graph rules, atomic negation and tic-tac-toe. In:
Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 42-55. Springer,
Heidelberg (2010)

Baget, J.E,, Lecleére, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for rules with
existential variables. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, pp. 677-682 (2009)

Chein, M., Mugnier, M.L.: Graph-based Knowledge Representation: Computational Foun-
dations of Conceptual Graphs, 1st edn. Springer Publishing Company, Incorporated (2008)
Brewka, G., Eiter, T.: Prioritizing default logic: Abridged report. In: Festschrift on the Occa-
sion of Prof. Dr. W. Bibel’s 60th Birthday. Kluwer (1999)

Buche, P., Cucheval, V., Diattara, A., Fortin, J., Gutierrez, A.: Implementation of a knowledge
representation and reasoning tool using default rules for a decision support system in agron-
omy applications. In: Croitoru, M., Rudolph, S., Woltran, S., Gonzales, C. (eds.) GKR 2013.
LNCS (LNAI), vol. 8323, pp. 1-12. Springer, Heidelberg (2014)

http://jgrapht.org/

	Default Reasoning Implementation in CoGui
	Introduction
	Conceptuals Graphs in Cogui
	Support
	Simple Conceptual Graphs
	Conceptual Graph Rules

	Default Rules
	Default CG Rules

	Default Reasoning with Default CG Rules in CoGui
	Implementation

	Conclusion

