Skip to main content

Automatic Extraction of Semantic Relations by Using Web Statistical Information

  • Conference paper
Graph-Based Representation and Reasoning (ICCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8577))

Included in the following conference series:

Abstract

A semantic network is a graph which represents semantic relations between concepts, used in a lot of fields as a form of knowledge representation. This paper describes an automatic approach to identify semantic relations between concepts by using statistical information extracted from the Web. We automatically constructed an associative network starting from a lexicon. Moreover we applied these measures to the ESL semantic similarity test proving that our model is suitable for representing semantic correlations between terms obtaining an accuracy which is comparable with the state of the art.

This work has been supported by project PRISMA PON04a2 A/F funded by the Italian Ministry of University and Research within the PON 2007-2013 framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., Soroa, A.: A study on similarity and relatedness using distributional and wordnet-based approaches. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Boulder, pp. 19–27 (June 2009)

    Google Scholar 

  2. Collins, A., Loftus, E.: A spreading activation theory of semantic processing. Psychological Review 82, 407–428 (1975)

    Article  Google Scholar 

  3. Fellbaum, C. (ed.): WordNet: An Electronic Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Francis, W.N., Kucera, H.: Frequency Analysis of English Usage: Lexicon and Grammar. Houghton Mifflin (1982)

    Google Scholar 

  5. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI 2007), Hyderabad, pp. 1606–1611 (January 2007)

    Google Scholar 

  6. Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms. WordNet An electronic lexical database, 305–332 (April 1998)

    Google Scholar 

  7. Hughes, T., Ramage, D.: Lexical semantic relatedness with random graph walks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing - Conference on Computational Natural Language Learning (EMNLP-CoNLL), Prague, pp. 581–589 (June 2007)

    Google Scholar 

  8. Janetzko, D.: Objectivity, Reliability, and Validity of Search Engine Count Estimates. International Journal of Internet Science 3(1), 7–33 (2008)

    Google Scholar 

  9. Jarmasz, M., Szpakowicz, S.: Roget’s thesaurus and semantic similarity. In: Proceedings of Recent Advances in Natural Language Processing, Borovets, pp. 212–219 (September 2003)

    Google Scholar 

  10. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of International Conference on Research in Computational Linguistics, Taipei, Taiwan, pp. 19–33 (August 1997)

    Google Scholar 

  11. Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for word sense identification. WordNet: An Electronic Lexical Database 49(2), 265–283 (1998)

    Google Scholar 

  12. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, Madison, vol. 1, pp. 296–304 (July 1998)

    Google Scholar 

  13. Navigli, R.: Word Sense Disambiguation: A survey. ACM Computing Surveys 41 (2009)

    Google Scholar 

  14. Navigli, R., Ponzetto, S.: BabelNet: The Automatic Construction, Evaluation and Application of a Wide-Coverage Multilingual Semantic Network. Artificial Intelligence 193 (2012)

    Google Scholar 

  15. Ross Quillian, M.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing. MIT Press, Cambridge (1968)

    Google Scholar 

  16. Rayson, P., Charles, O., Auty, I.: Can Google count? Estimating search engine result consistency. In: Proceedings of the Seventh Web as Corpus Workshop, pp. 23–30 (2012)

    Google Scholar 

  17. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: International Joint Conference for Artificial Intelligence, Montreal, pp. 448–453 (August 1995)

    Google Scholar 

  18. Siblini, R., Kosseim, L.: Using a Weighted Semantic Network for Lexical Semantic Relatedness. In: Proceedings of Recent Advances in Natural Language Processing (RANLP 2013), Hissar, Bulgaria (September 2013)

    Google Scholar 

  19. Strube, M., Ponzetto, S.P.: WikiRelate! Computing semantic relatedness using Wikipedia. In: Proceedings of the National Conference on Artificial Intelligence, Boston, vol. 21, p. 1419 (July 2006)

    Google Scholar 

  20. Terra, E., Clarke, C.L.A.: Frequency estimates for statistical word similarity measures. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, Edmonton, vol. 21, pp. 165–172 (May 2003)

    Google Scholar 

  21. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text relatedness based on a word thesaurus. Journal of Artificial Intelligence Research 37(1), 1–40 (2010)

    MATH  Google Scholar 

  22. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer, Heidelberg (2001)

    Google Scholar 

  23. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, New Mexico, pp. 133–138 (June 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Borzì, V., Faro, S., Pavone, A. (2014). Automatic Extraction of Semantic Relations by Using Web Statistical Information. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds) Graph-Based Representation and Reasoning. ICCS 2014. Lecture Notes in Computer Science(), vol 8577. Springer, Cham. https://doi.org/10.1007/978-3-319-08389-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08389-6_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08388-9

  • Online ISBN: 978-3-319-08389-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics