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Abstract

The recently introduced problem of extending partial interval representations asks, for an interval graph
with some intervals pre-drawn by the input, whether the partial representation can be extended to a repre-
sentation of the entire graph. In this paper, we give a linear-time algorithm for extending proper interval
representations and an almost quadratic-time algorithm for extending unit interval representations.

We also introduce the more general problem of bounded representations of unit interval graphs, where
the input constrains the positions of some intervals by lower and upper bounds. We show that this problem
is NP-complete for disconnected input graphs and give a polynomial-time algorithm for the special class
of instances, where the ordering of the connected components of the input graph along the real line is
prescribed. This includes the case of partial representation extension.

The hardness result sharply contrasts the recent polynomial-time algorithm for bounded representations
of proper interval graphs [Balko et al. ISAAC’13]. So unless P = NP, proper and unit interval representa-
tions have vastly different structure. This explains why partial representation extension problems for these
different types of representations require substantially different techniques.

Keywords: intersection representation, partial representation extension, bounded representations,
restricted representation, proper interval graph, unit interval graph, linear programming

1. Introduction

Geometric intersection graphs, and in particular intersection graphs of objects in the plane, have gained a
lot of interest for their practical motivations, algorithmic applications, and interesting theoretical properties.
Undoubtedly the oldest and the most studied among them are interval graphs (INT), i.e., intersection graphs
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of intervals on the real line. They were introduced by Hájos [2] in the 1950’s and the first polynomial-time
recognition algorithm appeared already in the early 1960’s [3]. Several linear-time algorithms are known,
see [4, 5]. The popularity of this class of graphs is probably best documented by the fact that Web of
Knowledge registers over 300 papers with the words “interval graph” in the title. For useful overviews of
interval graphs and other intersection-defined classes, see textbooks [6, 7].

Only recently, the following natural generalization of the recognition problem has been considered [8].
The input of the partial representation extension problem consists of a graph and a part of the representation
and it asks whether it is possible to extend this partial representation to a representation of the entire graph.
Klav́ık et al. [8] give a quadratic-time algorithm for the class of interval graphs and a cubic-time algorithm for
the class of proper interval graphs. Two different linear-time algorithms are given for interval graphs [9, 10].
There are also polynomial-time algorithms for function and permutation graphs [11] as well as for circle
graphs [12]. Chordal graph representations as intersection graphs of subtrees of a tree [13] and intersection
representations of planar graphs [14] are mostly hard to extend.

A related line of research is the complex of simultaneous representation problems, pioneered by Jampani
and Lubiw [15, 16], where one seeks representations of two (or more) input graphs such that vertices shared
by the input graphs are represented identically in each of the representations. Although in some cases the
problem of finding simultaneous representations generalizes the partial representation extension problem,
e.g., for interval graphs [9], this connection does not hold for all graph classes. For example, extending
a partial representation of a chordal graph is NP-complete [13], whereas the corresponding simultaneous
representation problem is polynomial-time solvable [16]. While a similar reduction as the one from [9] works
for proper interval graphs, we are not aware of a direct relation between the corresponding problems for
unit interval graphs.

In this paper, we extend the line of research on partial representation extension problems by studying
the corresponding problems for proper interval graphs (PROPER INT) and unit interval graphs (UNIT INT).
Roberts’ Theorem [17] states PROPER INT = UNIT INT. It turns out that specific properties of unit inter-
val representations were never investigated since it is easier to work with combinatorially equivalent proper
interval representations. It is already noted in [8] that partial representation extension behaves differently
for these two classes; see Figure 1a. This is due to the fact that for proper interval graphs, in whose repre-
sentations no interval is a proper subset of another interval, the extension problem is essentially topological
and can be treated in a purely combinatorial manner. On the other hand, unit interval representations,
where all intervals have length one, are inherently geometric, and the corresponding algorithms have to take
geometric constraints into account.

It has been observed in other contexts that geometric problems are sometimes more difficult than the
corresponding topological problems. For example, the partial drawing extension of planar graphs is linear-
time solvable [18] for topological drawing but NP-hard for straight-line drawings [19]. Together with Balko
et al. [20], our results show that a generalization of partial representation extension exhibits this behavior
already in 1-dimensional geometry. The bounded representation problem is polynomial-time solvable for

a b c

(a)
a

b

c

R′

PROPER INT = UNIT INT

PROPER INT R UNIT INT R
(b)

f

Figure 1: (a) A partial representation which is extendible as a proper interval representation, but not extendible as a unit interval
representation. (b) The three structures studied in this paper. The class of proper/unit interval graphs, all proper interval
representations and its substructure of all unit interval representations. The denoted mapping f assigns to a representation
the graph it represents. The Roberts’ Theorem [17] just states that f restricted to unit interval representations is surjective.
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proper interval graphs [20] and NP-complete for unit interval graphs. From a perspective of representations,
this result separates proper and unit interval graphs. We show that, unless P = NP, the structure of all
proper interval representations is significantly different from the structure of all unit interval representations;
see Figure 1b.

Next, we formally introduce the problems we study and describe our results.

1.1. Classes and Problems in Consideration

For a graph G, an intersection representation R is a collection of sets {Ru : u ∈ V (G)} such that
Ru ∩ Rv 6= ∅ if and only if uv ∈ E(G); so the edges of G are encoded by the intersections of the sets. An
intersection-defined class C is the class of all graphs having intersecting representations with some specific
type of sets Ru. For example, in an interval representation each Ru is a closed interval of the real line. A
graph is an interval graph if it has an interval representation.

Studied Classes. We consider two classes of graphs. An interval representation is called proper if no interval
is a proper subset of another interval (meaning Ru ⊆ Rv implies Ru = Rv). An interval representation
is called unit if the length of each interval is one. The class of proper interval graphs (PROPER INT)
consists of all interval graphs having proper interval representations, whereas the class of unit interval
graphs (UNIT INT) consists of all interval graphs having unit interval representations. Clearly, every unit
interval representation is also a proper interval representation.

In an interval representation R = {Rv : v ∈ V }, we denote the left and right endpoint of the interval
Rv by ℓv and rv, respectively. For numbered vertices v1, . . . , vn, we denote these endpoints by ℓi and
ri. Note that several intervals may share an endpoint in a representation. When we work with multiple
representations, we use R′ and R̄ for them. Their intervals are denoted by R′v = [ℓ′v, r

′
v] and R̄v = [ℓ̄v, r̄v].

Studied Problems. The recognition problem of a class C asks whether an input graph belongs to C; that
is, whether it has a representation by the specific type of sets Ru. We study two generalizations of this
problem: The partial representation extension problem, introduced in [8], and a new problem called the
bounded representation problem.

A partial representation R′ of G is a representation of an induced subgraph G′ of G. A vertex in V (G′)
is called pre-drawn. A representation R extends R′ if Ru = R′u for each u ∈ V (G′).

Problem: RepExt(C) (Partial Representation Extension of C)
Input: A graph G with a partial representation R′.

Output: Does G have a representation R that extends R′?

Suppose, that we are given two rational numbers lbound(vi) and ubound(vi) for each vertex vi. A represen-
tation R is called a bounded representation if lbound(vi) ≤ ℓi ≤ ubound(vi).

Problem: BoundRep (Bounded Representation of UNIT INT)
Input: A graph G and two rational numbers lbound(vi)

and ubound(vi) for each vi ∈ V (G).
Output: Does G have a bounded unit interval representation?

It is easy to see that BoundRep generalizes RepExt(UNIT INT) since we can just put lbound(vi) =
ubound(vi) = ℓ′i for all pre-drawn vertices, and lbound(vi) = −∞, ubound(vi) = ∞ for the remaining
vertices.

The bounded representation problem can be considered also for interval graphs and proper interval
graphs, where the left and right endpoints of the intervals can be restricted individually. A recent paper
of Balko et al. [20] proves that this problem is polynomially solvable for these classes. Note that for unit
intervals, it suffices to restrict the left endpoint since ri = ℓi+1. The complexity for other classes, e.g. circle
graphs, circular-arc graphs, permutation graphs, is open.
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1.2. Contribution and Outline.

In this paper we present five results. The first is a simple linear-time algorithm for
RepExt(PROPER INT), improving over a previous O(nm)-time algorithm [8]; it is based on known char-
acterizations, and we present it in Section 3.

Theorem 1.1. RepExt(PROPER INT) can be solved in time O(n+m).

We note that this algorithm needs some minor and very natural assumption on the encoding of the input;
see Conclusions for details.

Second, in Section 4, we give a reduction from 3-Partition to show that BoundRep is NP-complete for
disconnected graphs. The main idea is that prescribed intervals partition the real line into gaps of a fixed
width. Integers are encoded in connected components whose unit interval representations require a certain
width. By suitably choosing the lower and upper bounds, we enforce that the connected components have
to be placed inside the gaps such that they do not overlap.

Theorem 1.2. BoundRep is NP-complete.

Third, in Section 5.1, we give a relatively simple quadratic-time algorithm for the special case of Bound-
Rep where the order of the connected components along the real line is fixed. We formulate this problem
as a sequence of linear programs, and we show that each linear program reduces to a shortest-path problem
which we solve with the Bellmann-Ford algorithm.

The running time is O(n2r + nD(r)), where r is the total encoding length of the bounds in the input,
and D(r) is the time required for multiplying or dividing two numbers whose binary representation has
length r. This is due to the fact that the numbers specifying the upper and lower bounds for the intervals
can be quite close to each other, requiring that the corresponding rationals have an encoding that is super-
polynomial in n. Clearly, two binary numbers whose representations have length r can be added in O(r)
time, explaining the term of O(n2r) in the running time. However, using Bellmann-Ford for solving the LP
requires also the comparison of rational numbers. To be able to do this efficiently, we convert the rational
numbers to a common denominator. Hence, the multiplication cost D(r) enters the running time. The best
known algorithm achieves D(r) = O(r log r2log

∗ r) [22].
Fourth, in Sections 5.2–5.6, we show how to reduce the dependency on r to obtain a running time

of O(n2 + nD(r)), which may be beneficial for instances with bounds that have a long encoding.

Theorem 1.3. BoundRep with a prescribed ordering ◭ of the connected components can be solved in time
O(n2 + nD(r)), where r is the size of the input describing bound constraints.

Our algorithm is based on shifting intervals. It starts with some initial representation and creates, by a
series of transformations, the so-called left-most representation of the input graph. The algorithm performs
O(n2) combinatorial iterations, each taking time O(1). The additional time O(nD(r)) is used for arithmetic
operations with the bounds. The main idea for reducing the running time with respect to the previous
approach is to work with short approximations of the involved rational numbers. We compute the precise
position of intervals only once, when they reach their final position.

Further, we derive in Sections 4.1, 5.2, and 5.4 many structural results concerning unit interval repre-
sentations. In particular, we show that all representation of one connected component form a semilattice.
We believe that these results might be useful in designing a faster algorithm, attacking other problems, and
getting overall better understanding of unit interval representations.

If the number of connected components is small, we can test all possible orderings ◭.

Corollary 1.4. For c connected components, BoundRep can be solved in O(c!(n2 + nD(r))) time.

Finally, we note that every instance of RepExt(UNIT INT) is an instance of BoundRep. In Section 6,
we show how to derive for these special instances a suitable ordering ◭ of the connected components,
resulting in an efficient algorithm for RepExt(UNIT INT).
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Theorem 1.5. RepExt(UNIT INT) can be solved in time O(n2 + nD(r)), where r is the size of the input
describing positions of pre-drawn intervals.

All the algorithms described in this paper are also able to certify the extendibility by constructing the
required representations.

2. Notation, Preliminaries and Structure

As usual, we reserve n for the number of vertices andm for the number of edges of the graphG. We denote
the set of vertices by V (G) and the set of edges by E(G). For a vertex v, we denote the closed neighborhood
of v by N [v] = {x : vx ∈ E(G)} ∪ {v}. We also reserve r for the size of the input describing either bound
constraints (for the BoundRep problem) or positions of pre-drawn intervals (for RepExt(UNIT INT)).
This value r is for the entire graph G, and we use it even when we deal with a single component of G. We
reserve c for the number of components of G (maximal connected subgraphs of G).

(Un)located Components. Unlike the recognition problem, RepExt cannot generally be solved inde-
pendently for connected components. A connected component C of G is located if it contains at least one
pre-drawn interval and unlocated if it contains no pre-drawn interval.

Let R be any interval representation. Then for each component C, the union
⋃

u∈C Ru is a connected
segment of the real line, and for different components we get disjoint segments. These segments are ordered
from left to right, which gives a linear ordering ◭ of the components. So we have c components ordered
C1 ◭ · · · ◭ Cc.

Structure. The main goal of this paper is to establish Theorem 1.3 and to apply it to solve
RepExt(UNIT INT). Since this paper contains several other results, the structure might not be completely
clear. Now, we try to sketch the story of this paper.

In Section 3, we describe a key structural lemma of Deng et al. [23]. Using this lemma, we give a simple
characterization of extendible instances of RepExt(PROPER INT), which yields the linear-time algorithm
of Theorem 1.1. Also, the reader gets more familiar with the basic difficulties we need to deal with in the
case of unit interval graphs.

In Section 4, we show two results for the BoundRep problem. First, we give a polynomial bound on
the required resolution of the drawing. So there exists a value ε, which is polynomial in the size of the
input, such that there exists a representation where, for every vi, the positions ℓi and ri belong to the ε-grid
{kε : k ∈ Z}. Using this, the required representation can be constructed in this ε-grid. Also, we show that
the BoundRep problem is in general NP-complete, which proves Theorem 1.2.

Section 5 is the main section of this paper and it deals with the BoundRep problem with a prescribed
ordering ◭ of the components. First, we describe an LP-based algorithm for solving this problem that solves
2c linear programs. Then we derive some structural results concerning the partially ordered set Rep of all
ε-grid unit interval representations. Using this structure, we conclude the section with a fast combinatorial
algorithm for the above linear programs, solving the BoundRep problem in time O(n2 + nD(r)).

In Section 6, we show using the main theorem that RepExt(UNIT INT) can be solved in time O(n2 +
nD(r)). In Conclusions, we deal with the related problem of simultaneous representations and give some
open problems.

3. Extending Proper Interval Representations

In this section, we describe how to extend partial representations of proper interval graphs in time
O(m+ n). We also give a simple characterization of all extendible instances.

Indistinguishable Vertices. Vertices u and v are called indistinguishable if N [u] = N [v]. The vertices of
G can be partitioned into groups of (pairwise) indistinguishable vertices. Note that indistinguishable vertices
may be represented by the same intervals (and this is actually true for general intersection representations).
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v1
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v3

v4
v5
v6
v7

v8

R1

v1
v2
v3

v4
v5

v6
v7

v8

R2

Figure 2: Two proper interval representations R1 and R2 with the left-to-right orderings v1 ⊳ v2 ⊳ v3 ⊳ v4 ⊳ v5 ⊳ v6 ⊳ v7 ⊳ v8
and v2 ⊳ v1 ⊳ v3 ⊳ v4 ⊳ v5 ⊳ v7 ⊳ v6 ⊳ v8.

Since indistinguishable vertices are not very interesting from the structural point of view, if the structure of
the pre-drawn vertices allows it, we want to prune the graph to keep only one vertex per group.

Suppose that we are given an instance of RepExt(PROPER INT). We compute the groups of indistin-
guishable vertices in time O(n + m) using the algorithm of Rose et al. [24]. Let u and v be two indistin-
guishable vertices. If u is not pre-drawn, or both vertices are pre-drawn with R′u = R′v, then we remove
u from the graph, and in the final constructed representation (if it exists) we put Ru = Rv. For the rest
of the section, we shall assume that the input graph and partial representation are pruned. An important
property is that for any representation of a pruned graph, it holds that all intervals are pairwise distinct. So
if two intervals are pre-drawn in the same position and the corresponding vertices are not indistinguishable,
then we stop the algorithm because the partial representation is clearly not extendible.

Left-to-right ordering. Roberts [25] gave the following characterization of proper interval graphs:

Lemma 3.1 (Roberts). A graph is a proper interval graph if and only if there exists a linear ordering
v1 ⊳ v2 ⊳ · · · ⊳ vn of its vertices such that the closed neighborhood of every vertex is consecutive.

This linear order ⊳ corresponds to the left-to-right order of the intervals on the real line in some proper
interval representation of the graph. In each representation, the order of the left endpoints is exactly the
same as the order of the right endpoints, and this order satisfies the condition of Lemma 3.1. For an example
of ⊳, see Figure 2.

How many different orderings ⊳ can a proper interval graph admit? In the case of a general unpruned
graph possibly many, but all of them have a very simple structure. In Figure 2, the graph contains two
groups {v1, v2, v3} and {v6, v7}. The vertices of each group have to appear consecutively in the ordering ⊳

and may be reordered arbitrarily. Deng et al. [23] proved the following:

Lemma 3.2 (Deng et al.). For a connected (unpruned) proper interval graph, the ordering ⊳ satisfying
the condition of Lemma 3.1 is uniquely determined up to local reordering of groups of indistinguishable
vertices and complete reversal.

This lemma is key for partial representation extension of proper interval graphs. Essentially, we just have
to deal with a unique ordering (and its reversal) and match the partial representation on it. Notice that in
a pruned graph, if two vertices are indistinguishable, then their order is prescribed by the partial represen-
tation.

We want to construct a partial ordering < which is a simple representation of all orderings ⊳ from
Lemma 3.1. There exists a proper interval representation with an ordering ⊳ if and only if ⊳ extends either
< or its reversal. According to Lemma 3.2, < can be constructed by taking an arbitrary ordering ⊳ and
making indistinguishable vertices incomparable. For the graph in Figure 2, we get

(v1, v2, v3) < v4 < v5 < (v6, v7) < v8,

where groups of indistinguishable vertices are put in brackets. This ordering is unique up to reversal and
can be constructed in time O(n+m) [26].

Characterization of Extendible Instances. We give a simple characterization of the partial represen-
tation instances that are extendible. We start with connected instances. Let G be a pruned proper interval
graph and R′ be a partial representation of its induced subgraph G′. Then intervals in R′ are in some
left-to-right ordering <R

′

. (Recall that the pre-drawn intervals are pairwise distinct.)
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1 2

3

4 5 6

ℓ3 ℓ4 r3 r4 ℓ6 r6ℓ1 ℓ2 r1 r2 ℓ5 r5

Figure 3: Representation of a component with order 1 ⊳ 2 ⊳ 3 ⊳ 4 ⊳ 5 ⊳ 6. First, we compute the common order of the left
and right endpoints: ℓ1 ⋖ ℓ2 ⋖ r1 ⋖ ℓ3 ⋖ ℓ4 ⋖ r2 ⋖ r3 ⋖ ℓ5 ⋖ r4 ⋖ ℓ6 ⋖ r5 ⋖ r6. The endpoints of the pre-drawn intervals split the
segment into several subsegments. We place the remaining endpoints in this order and, within every subsegment, distributed
equidistantly.

Lemma 3.3. The partial representation R′ of a connected graph G is extendible if and only if there exists
a linear ordering ⊳ of V (G) such that:

(1) The ordering ⊳ extends <R
′

, and either < or its reversal.

(2) Let R′u and R′v be two pre-drawn touching intervals, i.e., ru = ℓv, and let w be any vertex distinct from
u and v. If uw ∈ E(G), then w ⊳ v, and if vw ∈ E(G), then u ⊳ w.

Proof. If there exists a representation R extending R′, then it is in some left-to-right ordering ⊳. Clearly,
the pre-drawn intervals are placed the same, so ⊳ has to extend <R

′

. According to Lemma 3.2, ⊳ extends
< or its reversal. As for (2), clearly v has to be the right-most neighbor of u in R: If Rw is on the right of
Rv, it would not intersect Ru. Similarly, u is the left-most neighbor of v.

Conversely, let v1 ⊳ · · · ⊳ vn be an ordering from the statement of the lemma. We construct a represen-
tation R extending R′ as follows. We compute a common linear ordering ⋖ of the left and right endpoints
from left-to-right.1 We start with the ordering ℓ1⋖· · ·⋖ℓn, into which we insert the right endpoints r1, . . . , rn
one-by-one. For vertex vi, let vj be its right-most neighbor in the ordering ⊳. Then, we place ri right before
ℓj+1 (if j < n, otherwise we append ri to the end of the ordering).

This left-to-right common order ⋖ is uniquely determined by ⊳. Since ⊳ extends <R
′

, it is compatible
with the partial representation (the pre-drawn endpoints are ordered as in ⋖). To construct the representa-
tion, we just place the non-pre-drawn endpoints equidistantly into the gaps between neighboring pre-drawn
endpoints (or to the left or right of R′). It is important that, if two pre-drawn endpoints ℓi and rj share
their position, then according to condition (2) there is no endpoint placed in between of ℓi and rj in ⋖

(otherwise one of the two implications would not hold, depending whether a left endpoint is intersected in
between, or a right one). See Figure 3 for an example.

We argue correctness of the constructed representation R. First, it extends R′, since the pre-drawn
intervals are not modified. Second, it is a correct interval representation: Let vi and vj be two vertices
with vi ⊳ vj , and let vk be the right-most neighbor of vi in ⊳. If vivj ∈ E(G), then ℓi ⋖ ℓk ⋖ ri and, by
consecutivity of N [u] in ⊳, we have ℓj⋖ ℓk. Therefore, Rvi and Rvj intersect. If vivj /∈ E(G) and vj 6= vk+1,
then ri ⋖ ℓk+1 ⋖ ℓj, so Rvi and Rvj do not intersect. If vivj /∈ E(G) and vj = vk+1, then ri ⋖ ℓk+1 and Rvi

and Rvj do not intersect. Finally, we argue that R is a proper interval representation. In ⋖ the order of
the left endpoints is the same as the order of the right-endpoints, since ri+1 is always placed on the right of
ri in ⋖.

We conclude that the representation R can be made small enough to fit into any open segment of the
real line that contains all pre-drawn intervals. �

Now, we are ready to characterize general solvable instances.

Lemma 3.4. A partial representation R′ of a graph G is extendible if and only if

(1) for each component C, the partial representation R′C consisting of the pre-drawn intervals in C is
extendible, and

1Notice that, in the partial representation, some intervals may share position. But if two endpoints ℓi and rj share the
position, then vivj ∈ E(G) and we break the tie by setting ℓi ⋖ rj .
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C1 C2 C3 C4

Figure 4: An example of a graph with four components C1, . . . , C4. The pre-drawn intervals give the order of the located
components C1 ◭ C2 ◭ C3. The non-located component C4 is placed to the right. For each component, we reserve some
segment in which we construct the representation.

(2) pre-drawn vertices of each component are consecutive in <R
′

.

Proof. The necessity of (1) is clear. For (2), if some component C would not have its pre-drawn vertices
consecutive in <R

′

, then
⋃

u∈C Ru would not be a connected segment of the real line (contradicting existence
of ◭ from Preliminaries).

Now, if the instance satisfies both conditions we can construct a correct representation R extending
R′ as follows. Using (2), the located components are ordered from left to right, and we assign pairwise
disjoint open segments containing all their pre-drawn intervals (there is a non-empty gap between located
components we can use). To unlocated components, we assign pairwise disjoint open segments to the right
of the right-most located component. See Figure 4. For each component, we construct a representation in
its open segment, using the construction in the proof of Lemma 3.3. �

We are ready to prove that RepExt(PROPER INT) can be solved in time O(n+m):

Proof (Theorem 1.1). We just use the characterization by Lemma 3.4, of which the conditions (1) and
(2) can be easily checked in time O(n+m). For Lemma 3.3, we check for each component both constraints
(1) and (2). To check (2), we compute for < and its reversal the unique orderings ⊳. We test for each of
them whether each touching pair of pre-drawn intervals is placed in ⊳ according to (2).

If necessary, a representation R can be constructed in the same running time since the proofs of Lem-
mas 3.3 and 3.4 are constructive. �

4. Bounded Representations of Unit Interval Graphs

In this section, we deal with bounded representations. An input of BoundRep consists of a graph G and,
for each vertex vi, a lower bound lbound(vi) and an upper bound ubound(vi). (We allow lbound(vi) = −∞
and ubound(vi) = +∞.) The problem asks whether there exists a unit interval representation R of G
such that lbound(vi) ≤ ℓi ≤ ubound(vi) for each interval vi. Such a representation is called a bounded
representation.

Since unit interval representations are proper interval representations, all properties of proper interval
representations described in Section 3 hold, in particular the properties of orderings ⊳ and <.

4.1. Representations in ε-grids

Endpoints of intervals can be positioned at arbitrary real numbers. For the purpose of the algorithm,
we want to work with representations drawn in limited resolution. For a given instance of the bounded
representation problem, we want to find a lower bound for the required resolution such that this instance is
solvable if and only if it is solvable in this limited resolution.

More precisely, we want to represent all intervals so that their endpoints correspond to points on some
grid. For a value ε = 1

K
> 0, where K is an integer, the ε-grid is the set of points {kε : k ∈ Z}.2 For a given

2If ε was not of the form 1

K
, then the grid could not contain both left and right endpoints of the intervals. We reserve K

for the value 1

ε
in this paper.
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v1 v5v2

v3 v4

LS

ε′-grid

RS

ε-grid

Figure 5: In the first step, we shift intervals to the left to the ε′-grid. The left shifts of v1, . . . , v5 are (0, 0, 1

2
ε′, 1

3
ε′, 0). In the

second step, we shift to the right in the refined ε-grid. Right shifts have the same relative order as left shifts: (0, 0, 2ε, ε, 0).

instance of BoundRep, we ask which value of ε ensures that we can construct a representation having all
endpoints on the ε-grid. So the value of ε is the resolution of the drawing.

If there are no bounds, every unit interval graph has a representation in the grid of size 1
n
[26]. In the

case of BoundRep, the size of the grid has to depend on the values of the bounds. Consider all values
lbound(vi) and ubound(vi) distinct from ±∞, and express them as irreducible fractions p1

q1
, p2

q2
, · · · , pb

qb
. Then

we define:

ε′ :=
1

lcm(q1, q2, . . . , qb)
, and ε :=

ε′

n
, (1)

where lcm(q1, q2, . . . , qb) denotes the least common multiple of q1, . . . , qb. It is important that the size of this
ε written in binary is O(r). We show that the ε-grid is sufficient to construct a bounded representation:

Lemma 4.1. If there exists a bounded representation R′ for an input of the problem BoundRep, there
exists a bounded representation R in which all intervals have endpoints on the ε-grid, where ε is defined by
(1).

Proof. We construct an ε-grid representation R from R′ in two steps. First, we shift intervals to the left,
and then we shift intervals slightly back to the right. For every interval vi, the sizes of the left and right
shifts are denoted by LS(vi) and RS(vi) respectively. The shifting process is shown in Figure 5.

In the first step, we consider the ε′-grid and shift all the intervals to the left to the closest grid-point
(we do not shift an interval if its endpoints are already on the grid). Original intersections are kept by this
shifting, since if x and y are two endpoints satisfying x ≤ y before the left-shift, then x ≤ y also holds
after the left-shift. So if vivj ∈ E and ℓi ≤ ℓj ≤ ri before the shift, then these inequalities are preserved by
the shifting. On the other hand, we may introduce additional intersections by shifting two non-intersecting
intervals to each other. In this case, after the left-shift, the intervals only touch; for an example, see vertices
v2 and v4 in Figure 5.

The second step shifts the intervals to the right in the refined ε-grid to remove the additional intersections
created by the first step. The right-shift is a mapping

RS : {v1, . . . , vn} → {0, ε, 2ε, . . . , (n− 1)ε}

having the right-shift property: For all pairs (vi, vj) with ri = ℓj, RS(vi) ≥ RS(vj) if and only if vivj ∈ E.
So the right-shift property ensures that RS fixes wrongly represented touching pairs created by LS.

To construct such a mapping RS, notice that if we relax the image of RS to [0, ε′), the reversal of LS
would have the right-shift property, since it produces the original correct representation R′. But the right-
shift property depends only on the relative order of the shifts and not on the precise values. Therefore, we
can construct RS from the reversal of LS by keeping the shifts in the same relative order. If LS(vi) is one
of the kth smallest shifts, we set RS(vi) = (k − 1)ε.3 See Figure 5.

We finally argue that these shifts produce a correct ε-grid representation. The right-shift does not create
additional intersections: After LS non-intersecting pairs are at distance at least ε′ = nε, and by RS they
can get closer by at most (n− 1)ε. Also, if after LS two intervals overlap by at least ε′, their intersection is
not removed by RS. The only intersections which are modified by RS are touching pairs of intervals (vi, vj)
having ri = ℓj after LS. The mapping RS shifts these pairs correctly according to the edges of the graph.

3In other words, for the smallest shifts we assign the right-shift 0; for the second smallest shifts, we assign ε; for the third
smallest shifts, 2ε; and so on.
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Next we look at the bound constraints. If, before the shifting, vi was satisfying ℓi ≥ lbound(vi), then
this is also satisfied after LS(vi) since the ε′-grid contains the value lbound(vi). Obviously, the inequality is
not broken after RS(vi). As for the upper bound, if LS(vi) = 0 and RS(vi) = 0, then the bound is trivially
satisfied. Otherwise, after LS(vi) we have ℓi ≤ ubound(vi)− ε′, so the upper bound still holds after RS(vi).
�

Additionally, Lemma 4.1 shows that it is always possible to construct an ε-grid representation having the
same topology as the original representation, in the sense that overlapping pairs of intervals keep overlapping,
and touching pairs of intervals keep touching. Also notice that both representations R and R′ have the
same order of the intervals.

In the standard unit interval graph representation problem, no bounds on the positions of the intervals
are given, and we get ε′ = 1 and ε = 1

n
. Lemma 4.1 proves in a particularly clean way that the grid of size

1
n
is sufficient to construct unrestricted representations of unit interval graphs. Corneil et al. [26] show how

to construct this representation directly from the ordering <, whereas we use some given representation to
construct an ε-grid representation.

4.2. Hardness of BoundRep

In this subsection we focus on hardness of bounded representations of unit interval graphs. We prove
Theorem 1.2 stating that BoundRep is NP-complete.

We reduce the problem from 3-Partition. An input of 3-Partition consists of natural numbers k, M ,
and A1, . . . , A3k such that M

4
< Ai <

M
2

for all i, and
∑

Ai = kM . The question is whether it is possible
to partition the numbers Ai into k triples such that each triple sums to exactly M . This problem is known
to be strongly NP-complete (even if all numbers have polynomial sizes) [27].

Proof (Theorem 1.2). According to Lemma 4.1, if there exists a representation satisfying the bound
constraints, then there also exists an ε-grid representation with this property. Since the length of ε given
by (1), written in binary, is polynomial in the size of the input, all endpoints can be placed in polynomially-
long positions. Thus we can guess the bounded representation and the problem belongs to NP.

Let us next prove that the problem is NP-hard. For a given input of 3-Partition, we construct the
following unit interval graph G. For each number Ai, we add a path P2Ai

(of length 2Ai − 1) into G as a
separate component. For all vertices x in these paths, we set bounds

lbound(x) = 1 and ubound(x) = k · (M + 2).

In addition, we add k+1 independent vertices v0, v1, . . . , vk, and make their positions in the representation
fixed:

lbound(vi) = ubound(vi) = i · (M + 2).

See Figure 6 for an illustration of the reduction. Clearly, the reduction is polynomial.
We now argue that the bounded representation problem is solvable if and only if the given input of 3-

Partition is solvable. Suppose first that the bounded representation problem admits a solution. There are
k gaps between the fixed intervals v0, . . . , vk each of which has space less than M +1. (The length of the gap
is M + 1 but the endpoints are taken by vi and vi+1.) The bounds of the paths force their representations
to be inside these gaps, and each path lives in exactly one gap. Hence the representation induces a partition
of the paths.

Now, the path P2Ai
needs space at least Ai in every representation since it has an independent set of

the size Ai. The representations of the paths may not overlap and the space in each gap is less than M +1,
hence the sum of all Ai’s in each part is at most M . Since the total sum of Ai’s is exactly kM , the sum in
each part has to be M . Thus the obtained partition solves the 3-Partition problem.

Conversely, every solution of 3-Partition can be realized in this way. �
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5. Bounded Representations of Unit Interval Graphs with Prescribed Ordering

In this section, we deal with the BoundRep problem when a fixed ordering ◭ of the components is
prescribed. First we solve the problem using linear programming. Then we describe additional structure
of bounded representations, and using this structure we construct an almost quadratic-time algorithm that
solves the linear programs.

5.1. LP Approach for BoundRep

According to Lemma 3.2, each component of G can be represented in at most two different ways, up
to local reordering of groups of indistinguishable vertices. Unlike the case of proper interval graphs, we
cannot arbitrarily choose one of the orderings, since neighboring components restrict each other’s space.
For example, only one of the two orderings for the component C1 in Figure 7 makes a representation of C2

possible.
In the algorithm, we process components C1 ◭ C2 ◭ · · · ◭ Cc from left to right and construct represen-

tations for them. When we process a component Ct, we want to represent it on the right of the previous
component Ct−1, and we want to push the representation of Ct as far to the left as possible, leaving as much
space for Ct+1, . . . , Cc as possible.

Now, we describe in details, how we process a component Ct. We calculate by the algorithm of Corneil
et al. the partial ordering < described in Section 3 and its reversal. The elements that are incomparable by
these partial orderings are vertices of the same group of indistinguishable vertices. For these vertices, the
following holds:

Lemma 5.1. Suppose there exists some bounded representation R. Then there exists a bounded represen-
tation R′ such that, for every indistinguishable pair vi and vj satisfying lbound(vi) ≤ lbound(vj), it holds
that ℓ′i ≤ ℓ′j.

Proof. Given a representation R, we call a pair (vi, vj) bad if vi and vj are indistinguishable, lbound(vi) ≤
lbound(vj) and ℓi > ℓj . We describe a process which iteratively constructs R′ from R, by constructing
a sequence of representations R = R0,R1, . . . ,Rk = R′, where the positions in a representation Rs are
denoted by ℓsi ’s.

In each step s, we create Rs from Rs−1 by fixing one bad pair (vi, vj): we set ℓsi = ℓs−1j and the rest of
the representation remains the same. Since vi and vj are indistinguishable and Rs−1 is correct, the obtained
Rs is a representation. Regarding bound constraints,

lbound(vi) ≤ lbound(vj) ≤ ℓs−1j = ℓsi < ℓs−1i ≤ ubound(vi),

so the bounds of vi are satisfied.

v0 v1 v2

0 1 9 18

bound for every x ∈ P2Ai

A1 A6 A3 A4 A2 A5

v0
v1
v2

A1

A2

A3

A4

A5

A6

Figure 6: We consider the following input for 3-Partition: k = 2, M = 7, A1 = A2 = A3 = A4 = 2 and A5 = A6 = 3. The
associated unit interval graph is depicted on top, and at the bottom we find one of its correct bounded representations, giving
3-partitioning {A1, A3, A6} and {A2, A4, A5}.

11



Now, in each Rs the set of all left endpoints is a subset of the set of all left endpoints of R. In each step,
we move one left-endpoint to the left, so each endpoint is moved at most n − 1 times. Hence the process
terminates after O(n2) iterations and produces a representation R′ without bad pairs as requested. �

For < and its reversal, we use Lemma 5.1 to construct linear orderings ⊳: If vi and vj belong to the same
group of indistinguishable vertices and lbound(vi) < lbound(vj), then vi ⊳ vj . If lbound(vi) = lbound(vj),
we choose any order ⊳ between vi and vj .

We obtain two total orderings ⊳, and we solve a linear program for each of them. Let v1 ⊳ v2 ⊳ · · · ⊳ vk
be one of these orderings. We denote the right-most endpoint of a representation of a component Ct by
Et. Additionally, we define E0 = −∞. Let ε be defined as in (1). We modify all lower bounds by putting
lbound(vi) = max

{

lbound(vi), Et−1+ε
}

for every interval vi, which forces the representation of Ct to be on
the right of the previously constructed representation of Ct−1. The linear program has variables ℓ1, . . . , ℓk,
and it minimizes the value of Et. We solve:

Minimize: Et := ℓk + 1,

subject to: ℓi ≤ ℓi+1, ∀i = 1, . . . , k − 1, (2)

ℓi ≥ lbound(vi), ∀i = 1, . . . , k, (3)

ℓi ≤ ubound(vi), ∀i = 1, . . . , k, (4)

ℓi ≥ ℓj − 1, ∀vivj ∈ E(G), vi ⊳ vj , (5)

ℓi + ε ≤ ℓj − 1, ∀vivj /∈ E(G), vi ⊳ vj . (6)

We solve the same linear program for the other ordering of the vertices of Ct. If none of the two programs
is feasible, we report that no bounded representation exists. If exactly one of them is feasible, we keep the
values obtained for ℓ1, . . . , ℓk and Et, and process the next component Ct+1. If the two problems are feasible,
we keep the solution in which the value of Et is smaller, and process Ct+1.

Lemma 5.2. Let the representation of Ct−1 be fixed. Every bounded ε-grid representation of the component
Ct with the left-to-right order v1 ⊳ · · · ⊳ vk which is on the right of the representation of Ct−1 satisfies
constraints (3)–(6).

Proof. Constraints of types (3) and (4) are satisfied, since the representation is bounded and on the right
of Ct−1. Constraints of type (5) correspond to a correct representation of intersecting pairs of intervals.
The non-intersecting pairs of an ε-grid representation are at distance at least ε, which makes constraints of
type (6) satisfied. �

Now, we are ready to show:

Proposition 5.3. The BoundRep problem with prescribed ◭ can be solved in polynomial time.

Proof. Concerning the running time, it depends polynomially on the sizes of n and ε, which are polynomial
in the size of the input r. It remains to show correctness.

Suppose that the algorithm returns a candidate for a bounded representation. The formulation of the
linear program ensures that it is a correct representation: Constraints of type (2) make the representation

u
C1

v
C2

u v

E1 E2

Figure 7: The positions of the vertices u and v are fixed by the bound constraints. The component C1 can only be represented
with u being the right-most interval, since otherwise C1 would block space for the component C2.
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respect ⊳. Constraints of type (3) and (4) enforce that the given lower and upper bounds for the positions of
the intervals are satisfied, force the prescribed ordering ◭ on the representation of G, and force the drawings
of the distinct components to be disjoint. Finally, constraints of type (2), (5) and (6) make the drawing of
the vertices of a particular component Ct to be a correct representation.

Suppose next that a bounded representation exists. According to Lemma 4.1 and Lemma 5.1, there
also exists an ε-grid bounded representation R′ having the order in the indistinguishable groups as defined
above. So for each component Ct, one of the two orderings ⊳ constructed for the linear programs agrees
with the left-to-right order of Ct in R′.

We want to show that the representation of each component Ct in R′ gives a solution to one of the two
linear programs associated to Ct. We denote by E′t the value of Et in the representation R′, and by Emin

t

the value of Et obtained by the algorithm after solving the two linear programming problems associated to
Ct. We show by induction on t that Emin

t ≤ E′t, which specifically implies that Emin
t exists and at least one

of the linear programs for Ct is solvable.
We start with C1. As argued above, the left-to-right order in R′ agrees with one of the orderings ⊳, so

the representation of C1 satisfies the constraints (2). Since E0 = −∞, the lower bounds are not modified.
By Lemma 5.2, the rest of the constraints are also satisfied. Thus the representation of C1 gives a feasible
solution for the program and gives Emin

1 ≤ E′1.
Assume now that, for some Ct with t ≥ 1, at least one of the two linear programming problems associated

to Ct admits a solution, and from induction hypothesis we have Emin
t ≤ E′t. In R′, two neighboring

components are represented at distance at least ε. Therefore for every vertex vi of Ct+1, it holds ℓi ≥
E′t + ε ≥ Emin

t + ε, so the modification of the lower bound constraints is satisfied by R′. Similarly as above
using Lemma 5.2, the representation of Ct+1 in R′ satisfies the remaining constraints. It gives some solution
to one of the programs and we get Emin

t+1 ≤ E′t+1.
In summary, if there exists a bounded representation, for each component Ct at least one of the two

linear programming problems associated to Ct admits a solution. Therefore, the algorithm returns a correct
bounded representation R (as discussed in the beginning of the proof). We note that R does not have to be
an ε-grid representation since the linear program just states that non-intersecting intervals are at distance
at least ε. To construct an ε-grid representation if necessary, we can proceed as in the proof of Lemma 4.1.
�

We note that it is possible to reduce the number of constraints of the linear program from O(k2) to
O(k), since neighbors of each vi appear according to Lemma 3.1 consecutively in ⊳. Using the ordering
constraints (2), we can replace constraints (5) and (6) by a linear number of constraints as follows. For
each vj , there are two cases. If vj is adjacent to all vertices vi such that vi ⊳ vj , then we only state the
constraint (5) for v1 and vj . Otherwise, let vi be the rightmost vertex such that vi ⊳ vj and vivj /∈ E. Then
we only state the constraint (5) for vi+1 and vj , and the constraint (6) for vi and vj . This is equivalent to
the original formulation of the problem.

In general, any linear program can be solved in O(n3.5r2 log r log log r) time by using Karmarkar’s algo-
rithm [28]. However, our linear program is special which allows to use faster techniques:

Proposition 5.4. The BoundRep problem with prescribed ◭ can be solved in time O(n2r + nD(r)).

Proof. Without loss of generality, we assume that the upper and lower bounds restrict the final represen-
tation (if it exists) to lie in the interval [1, n + 3]. For a given i, let ji be the index such that vji is the
rightmost neighbor of vi in ⊳. Let hi be the index such that vhi

is the rightmost vertex such that vhi
⊳ vi

and vhi
vi /∈ E. (Notice that hi might not be defined, in which case we ignore inequalities containing it.)

We replace the variables ℓ1, . . . , ℓk by x0, . . . , xk such that ℓi = xi − x0. We want to solve the following
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v1
v2

v3 v4

v5

v6
v7

u0

u1

u2

u3

u4

u5

u6

u7

s

+0 +1 −1− ε see below

Figure 8: On the left, a unit interval graph with two pre-drawn intervals. On the right, the corresponding digraph D with the
weight encoded as in the box. The weights of the bold edges are as follows: w(u0, u2) = ubound(v2), w(u0, u5) = ubound(v5),
w(u2, u0) = −lbound(v2), and w(u5, u0) = −lbound(v5).

linear system:

Minimize: Et := xk − x0 + 1,

subject to: xi − xi+1 ≤ 0, ∀i = 1, . . . , k − 1,

x0 − xi ≤ −lbound(vi), ∀i = 1, . . . , k,

xi − x0 ≤ ubound(vi), ∀i = 1, . . . , k,

xji − xi ≤ 1, ∀i = 1, . . . , k,

xhi
− xi ≤ −1− ε, ∀i = 1, . . . , k.

The obtained linear program is a system of difference constraints, since each inequality has the form xi−xj ≤
bi,j.

Following [21, Chapter 24.4], if the system is feasible, a solution, which is not necessarily optimal,
can be found as follows. We define a weighted digraph D as follows. As the vertices, we have V (D) =

{s, u0, u1, . . . , uk} where ui corresponds to xi and s is a special vertex. For the edges ~E(D), we first have
an edge (s, ui) of the weight zero for every ui. Then for every constraint xi − xj ≤ bi,j, we add the edge
(uj, ui) of the weight bi,j . See Figure 8.

As proved in [21, Chapter 24.4], there are two possible cases. If G contains a negative-weight cycle, then
there is no feasible solution for the system. If G does not contain negative-weight cycles, then we define
δ(s, ui) as the weight of the minimum-weight path connecting s to ui in G. Then we put xi = δ(s, ui)
for each i which defines a feasible solution of the system. Moreover, this solution minimizes the objective
function max{xi}−min{xi}. We next show that this function is equivalent to the objective function in our
linear program.

Suppose that we have a solution of our system, satisfying the constraints but not necessarily optimizing
the objective function. Because of our assumption that the representation lies in the interval [1, n+ 3], we
know that ℓi > 0 for all i. Therefore, xi > x0. So min{xi} is always attained by x0, while max{xi} is always
attained by xk. So minimization of the objective function max{xi} −min{xi} is equivalent to the original
minimization of Et = xk − x0 + 1.

In order to find a negative-weight cycle in D or, alternatively, compute the weight of the minimum-weight
paths from s to all the other vertices of D, we use the Bellman-Ford algorithm. Notice that Dijkstra’s
algorithm cannot be used in this case, since some edges of D have negative weight. We next analyze the
running time of the whole procedure.

We assume that the cost of arithmetic operations with large numbers is not constant. The algorithm
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computes the value ε in the beginning which can be clearly done in time O(nD(r)). (Instead of the least
common multiple we can simply compute the product of qi’s.)

Afterwards, we compute the weights of the edges of D as multiples of ε, which takes time O(kD(r)).
Then each step of the Bellman-Ford algorithm requires time O(r), and the algorithm runs O(k2) steps in
total. The total time to solve each linear program is therefore O(k2r + kD(r)). Finally, the total time of
the algorithm is O(n2r + nD(r)). �

In the next subsections, we improve the time complexity of the BoundRep problem with prescribed ◭

to O(n2+nD(r)). Our algorithm makes use of several structural properties of the set of all representations.
We note that structural properties of the polyhedron of our linear program, in the case where all lower
bounds equal zero and there are no upper bounds, have been considered in several papers in the context of
semiorders [29, 30].

5.2. The Partially Ordered Set Rep

Let the graph G in consideration be a connected unit interval graph. We study structural properties of
its representations. Suppose that we fix one of the two partial left-to-right orders < of the intervals from
Section 3, so that only indistinguishable vertices are incomparable. We also fix some positive ε = 1

K
. For

most of this section, we work just with lower bounds and completely ignore upper bounds.
We define Rep as the set of all ε-grid representations satisfying the lower bounds and in some left-to-right

ordering that extends <. We define a very natural partial ordering ≤ on Rep: We say that R ≤ R′ if and
only if ℓi ≤ ℓ′i for every vi ∈ V (G); i.e., ≤ is the carthesian ordering of vectors (ℓ1, . . . , ℓn). In this section,
we study structural properties of the poset (Rep,≤).

If ε ≤ 1
n
, then Rep 6= ∅. The reason is that the graph G is a unit interval graph, and thus there always

exists an ε-grid representation R far to the right satisfying the lower bound contraints.

The Semilattice Structure. Let us assume that lbound(vi) > −∞ for some vi ∈ V (G). Let S be a subset
of Rep. The infimum inf(S) is the greatest representation R ∈ Rep such that R ≤ R′ for every R′ ∈ S. In
a general poset, infimums may not exist, but if they exist, they are always unique. For Rep, we show:

Lemma 5.5. Every non-empty S ⊆ Rep has an infimum inf(S).

Proof. We construct the requested infimum R as follows:

ℓi = min{ℓ′i : R
′ ∈ S}, ∀vi ∈ V (G).

Notice that the positions in R are well-defined, since the position of each interval in each R′ is bounded and
always on the ε-grid. Clearly, if R is a correct representation, it is the infimum inf(S). It remains to show
that R ∈ Rep.

Clearly, all positions in R belong to the ε-grid and satisfy the lower bound constraints. Let vi and vj be
two vertices. The values ℓi and ℓj in R are given by two representations R1,R2 ∈ S, that is, ℓi = ℓ1i and
ℓj = ℓ2j . Notice that the left-to-right order in R has to extend <: If vi < vj , then ℓi = ℓ1i ≤ ℓ2i < ℓ2j = ℓj ,
since R1 minimizes the position of vi and the left-to-right order in R2 extends <. Concerning correctness
of the representation of the pair vi and vj , we suppose that ℓi = ℓ1i ≤ ℓ2j = ℓj; otherwise we swap vi and vj .

• First we suppose that vivj ∈ E(G). Then ℓ2j ≤ ℓ1j , since R2 minimizes the position of vj . Since R1 is

a correct representation, ℓ1j − 1 ≤ ℓ1i . So ℓj − 1 ≤ ℓi ≤ ℓj , and the intervals v1 and v2 intersect.

• The other case is when vivj /∈ E(G). Then ℓ1i ≤ ℓ2i ≤ ℓ2j − 1− ε, since R1 minimizes the position of vi,
R2 is a correct representation and vi < vj in both representations. So vi and vj do not intersect in R
as requested.

Consequently, R represents correctly each pair vi and vj , and hence R ∈ Rep. �
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A poset is a (meet)-semilattice if every pair of elements a, b has an infimum inf({a, b}). Lemma 5.5 shows
that the poset (Rep,≤) forms a (meet)-semilattice. Similarly as Rep, we could consider the poset set of all
(ε-grid) representations satisfying both the lower and the upper bounds. The structure of this poset is a
complete lattice, since all subsets have infimums and supremums. Lattices and semilattices are frequently
studied, and posets that are lattices satisfy very strong algebraic properties.

The Left-most Representation. We are interested in a specific representation in Rep, called the left-
most representation. An ε-grid representation R ∈ Rep is the left-most representation if R ≤ R′ for every
R′ ∈ Rep; so the left-most representation is left-most in each interval at the same time. We note that the
notion of the left-most representation does not make sense if we consider general representations (not on
the ε-grid). The left-most representation is the infimum inf(Rep), and thus by Lemma 5.5 we get:

Corollary 5.6. The left-most representation always exists and it is unique.

There are two algorithmic motivations for studying left-most representations. First, in the linear program
of Section 5.1 we need to find a representation minimizing Et. Clearly, the left-most representation is
minimizing Et and in addition it is minimizing the rest of the endpoints as well. The second motivation is
that we want to construct a representation satisfying the upper bounds as well, so it seems reasonable to try
to place every interval as far to the left as possible. The left-most representation is indeed a good candidate
for a bounded representation:

Lemma 5.7. There exists a representation R′ satisfying both lower and upper bound constraints if and only
if the left-most representation R satisfies the upper bound constraints.

Proof. Since R ∈ Rep, it satisfies the lower bounds. If R satisfies the upper bound constraints, it is a
bounded representation. On the other hand, let R′ be a bounded representation. Then

lbound(vi) ≤ ℓi ≤ ℓ′i ≤ ubound(vi), ∀vi ∈ V (G),

and the left-most representation is also a bounded representation. �

5.3. Why Left-most Representations Cannot Be Easily Constructed by Iterations?

A very natural idea for an algorithm is to construct the left-most representation iteratively, by adding
the vertices v1, . . . , vn one by one and recomputing the left-most representation in each step. In this section,
we describe why this natural algorithm does not run in quadratic time. More precisely, we do not claim
that it is not possible to implement it in quadratic time or faster using some additional tricks and structural
results, but we did not succeeded in this matter.

The Iterative Algorithm. Let G be a connected unit interval graph, and let < be the left-to-right partial
ordering of its vertices v1, . . . , vn numbered from left to right. We denote by Gk the graph induced by
{v1, . . . , vk}. Let Rk be the left-most representation of Gk, and let ℓki be the position of the left endpoint of
vi in Rk. The iterative algorithm runs as follows.

We initiate R1 with ℓ11 = lbound(v1). To compute Rk from Rk−1, we first put ℓki := ℓk−1i for all
1 ≤ i ≤ k − 1, and ℓkk := max

{

lbound(vk), ℓ
k
j + 1 + ε

}

where vj is the rightmost placed non-neighbor of vk.
Since Rk is not likely a correct representation of Gk, we proceed by a series of fixes till we obtain a correct
representation:

• If vivj ∈ E(Gk), i < j, and ℓki < ℓkj − 1, we fix Rk by setting ℓki := ℓkj − 1.

• If vivj /∈ E(Gk), i < j, and ℓki ≥ ℓkj − 1, we fix Rk by setting ℓkj := ℓki + 1 + ε.

Correctness. We start by proving that the above algorithm is correct.

Proposition 5.8. The above iterative algorithm stops after finite number of steps and outputs the left-most
representation R.

16



Proof. It is just sufficient to show that it constructs the left-most representation Rk from the left-most
representation Rk−1, and the rest is true by induction. Let Rs

k be a vector of positions created by the
algorithm after s fixes, so Rs

k might not be a correct representation. We prove by induction according to s
that Rs

k ≤ Rk.
Since Rk−1 is the left-most representation of Gk−1, we get Rk−1 ≤ Rk|Gk−1

. We initiate ℓkk as far to

the left as possible, and thus R0
k ≤ Rk. Now let Rs−1

k ≤ Rk. Then we easily get Rs
k ≤ Rk since the fix of

(vi, vj) shifts one of them as little to the right as necessary; since Rk is a correct representation, it clearly
cannot have the shifted interval more to the left than Rs

k.
Since each fix strictly increases the position of one interval and according to Corrolary 5.6 the left-most

representation Rk always exists, we cannot apply fixes indefinitely and the algorithm outputs some correct
representation Rs

k. Since Rs
k ≤ Rk, we get Rs

k = Rk. �

Unclear Complexity. Even though the above algorithm is correct, it is not even clear that its complexity
is polynomial in n and does not depend on ε. We did not try to further estimate this complexity but it
seems one could bound the number of fixes in each iteration by something like O(n2) which would give a
cubic-time algorithm. The reason why this does not give a quadratic-time algorithm is that the position of
each interval can be updated by multiple fixes. We always shift as little as possible, and not as much as it
is required by the structure of the graph. Furthermore, we simplified our analysis by assuming that we can
locate a wrongly represented pair (vi, vj) in constant time, and that we compute on the arithmetic machine
(so we ignored numerical issues with small values of ε).

Nevertheless, we believe that the complexity of this algorithm could be improved which might lead to a
different quadratic-time (or potentially even linear-time) algorithm for the bounded representation problem
with prescribed ordering ⊳. As a good starting point, we suggest that one should get a good structural
understand how much Rk differs from Rk−1. Even through we give some additional properties concerning
the left-most representation, we still do not fully understand its structure. Therefore we derived a different
algorithm based on shifting which we describe in the rest of Section 5.

5.4. Left-Shifting of Intervals

Suppose that we construct some initial ε-grid representation that is not the left-most representation. We
want to transform this initial representation in Rep into the left-most representation of Rep by applying
a sequence of the following simple operations called the left-shifting. The left-shifting operation shifts
one interval of the representations by ε to the left such that this shift maintains the correctness of the
representation; for an example see Figure 9a. The main goal of this section is to prove that by left-shifting
we can always produce the left-most representation.

Proposition 5.9. For ε = 1
K

and K ≥ n
2
, an ε-grid representation R ∈ Rep is the left-most representation

if and only if it is not possible to shift any single interval to the left by ε while maintaining correctness of
the representation.
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Figure 9: (a) A representation modified by left-shifting of v6 and v4. (b) The corresponding obstruction digraphs H for each
of the representations. Only sinks of the obstruction digraphs can be left-shifted.
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Figure 10: An ε-grid representation for ε = 1

3
on the left and the obstruction digraph H containing a cycle on the right.

Before proving the proposition, we describe some additional combinatorial structure of left-shifting. An
interval vi is called fixed if it is in the left-most position and cannot ever be shifted more to the left, i.e.,
ℓi = min{ℓ′i : R

′ ∈ Rep}. For example, an interval vi is fixed if ℓi = lbound(vi). A representation is the
left-most representation if and only if every interval is fixed.

Obstruction Digraph. An interval vi, having ℓi > lbound(vi), can be left-shifted if it does not make the
representation incorrect, and the incorrectness can be obtained in two ways. First, there could be some
interval vj , vj ⊳ vi such that vivj /∈ E(G) and ℓj + 1 + ε = ℓi; we call vj a left obstruction of vi. Second,
there could be some interval vj , vi ⊳ vj such that vivj ∈ E(G) and ℓi + 1 = ℓj (so vi and vj are touching);
then we call vj a right obstruction of vi. In both cases, we first need to move vj before moving vi.

For the current representation R, we define the obstruction digraph H on the vertices of G as follows.
We put V (H) = V (G) and (vi, vj) ∈ E(H) if and only if vj is an obstruction of vi. For an edge (vi, vj), if
vj ⊳ vi, we call it a left edge; if vi ⊳ vj , we call it a right edge. As we apply left-shifting, the structure of H
changes; see Figure 9b.

Lemma 5.10. An interval vi is fixed if and only if there exists a directed path in H from vi to vj such that
ℓj = lbound(vj).

Proof. Suppose that vi is connected to vj by a path in H . By the definition of H , vxvy ∈ E(H) implies
that vy has to be shifted before vx. Thus vj has to be shifted before moving vi which is not possible since
ℓj = lbound(vj).

On the other hand, suppose that vi is fixed, i.e., ℓi = inf{ℓ′i : ∀R
′}. Let H ′ be the induced subgraph of

H of the vertices vj such that there exists a directed path from vi to vj . If for all vj ∈ H ′, ℓj > lbound(vj),
we can shift all vertices of H ′ by ε to the left which constructs a correct representation and contradicts that
vi is fixed. Therefore, there exists vj ∈ H ′ having ℓj = lbound(vj) as requested. �

For example in Figure 9 on the left, if ℓ4 = lbound(v4), then the intervals v3, v4, v5 and v7 are fixed.
Also, we can prove:

Lemma 5.11. If ε = 1
K

and K ≥ n
2
, the obstruction digraph H is acyclic.

Proof. Suppose for contradiction that H contains some cycle u1, . . . , uc. This cycle contains a left edges
and b right edges. Recall that if (ui, ui+1) is a left edge, then ℓui+1

= ℓui
− 1 − ε, and if it is a right edge,

ℓui+1
= ℓui

+ 1 (and similarly for (uc, u1)). If we go along the cycle from u1 to u1, the initial and the final
positions have to be the same. Therefore a(1 + ε) = b.

Now if this equation holds, then a has to be a multiple of K. Therefore a ≥ K and b ≥ K + 1, and thus
n ≥ c = a+ b ≥ 2K + 1 which is not possible. �

We note that the assumptionK ≥ n
2
is necessary and tight. For every ε = 1

K
, there exists a representation

of a graph with 2K + 1 vertices having a cycle in H . The graph contains two cliques v0, . . . , vK−1 and
w0, . . . , wK such that vi is also adjacent to w0, . . . , wi. Then the assignment ℓv0 = 0, ℓvi = ℓv0 + iε and ℓwi

=
ℓv0+1+iε is a correct representation. Observe thatH contains a cycle wkvk−1wk−1vk−2wk−2 . . . v1w1v0w0wk.
See Figure 10 for K = 3.

Predecessors of Poset Rep. A representation R′ ∈ Rep is a predecessor of R ∈ Rep if R′ < R and there
is no representation R̄ ∈ Rep such that R′ < R̄ < R. We denote the predecessor relation by ≺. In a general
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poset, predecessors may not exist. But they always exist for a poset of a discrete structure like (Rep,≤):
Indeed, there are finitely many representations R̄ between any R′ < R, and thus the predecessors always
exist. Also, for any two representations R′ < R, there exists a finite chain of predecessors R′ = R0 ≺ R1 ≺
· · · ≺ Rk = R.

For the poset (Rep,≤), we are able to fully describe the predecessor structure:

Lemma 5.12. For ε = 1
K

and K ≥ n
2
, the representation R′ is a predecessor of R if and only if R′ is

obtained from R by applying one left-shifting operation.

Proof. Clearly, if R′ is obtained from R by one left-shifting, it is a predecessor of R.
On the other hand, suppose we have R′ < R. Let H be the obstruction digraph of R and H̄ be the

subgraph of H induced by the intervals having different positions in R and R′. Then there are no directed
edges from H̄ to H \ H̄ (otherwise R′ would be an incorrect representation). According to Lemma 5.11, the
digraph H̄ is acyclic. Therefore, it contains at least one sink vi. By left-shifting vi in R, we create a correct
representation R̄ ∈ Rep. Clearly, R′ ≤ R̄ ≺ R, and so R′ is a predecessor of R if and only if R′ = R̄. �

Again, the assumption on the value of ε is necessary. For example in Figure 10, the structure of Rep is
just a single chain where a predecessor of some representation is obtained by shifting all intervals by ε to
the left.

Proof of Left-shifting Proposition. The main proposition of this subsection is a simple corollary of
Lemma 5.12.

Proof (Proposition 5.9). The left-most representation R is inf(Rep), so it has no predecessors and
nothing can be left-shifted. On the other hand, if inf(Rep) < R, there is a chain of predecessors in between
which implies using Lemma 5.12 that it is possible to left-shift some interval. �

5.5. Preliminaries for the Shifting Algorithm

Before describing the shifting algorithm, we present several results which simplify the graph and the
description of the algorithm.

Pruned Graph. The obstruction digraph H may contain many edges since each vertex vi can have many
obstructions. But if vi has many, say, left obstructions, these obstructions have to be positioned the same.
If two intervals u and v have the same position in a correct unit interval representation, then N [u] = N [v]
and they are indistinguishable. Our goal is to construct a pruned graph G′ which replaces each group of
indistinguishable vertices of G by a single vertex. This construction is not completely straightforward since
indistinguishable vertices may have different lower and upper bounds.

Let {Γ1, . . . ,Γk} be the partitioning of V (G) by the groups of indistinguishable vertices (and the groups
are ordered by ⊳ from left to right). We construct a unit interval graph G′, where the vertices are γ1, . . . , γk
with lbound(γi) = max{lbound(vj) : vj ∈ Γi}, and the edges E(G′) correspond to the edges between the
groups of G.

Suppose that we have the left-most representation R′ of the pruned graph G′ and we want to construct
the left-most representation R of G. Let Γℓ be a group. We place each interval vi ∈ Γℓ as follows. Let γℓ

←

be the first non-neighbor of γℓ on the left and γℓ
→ be the right-most neighbor of γℓ (possibly γℓ

→ = γℓ). We
set

ℓi = max{lbound(vi), ℓγℓ
←

+ 1 + ε, ℓγℓ
→

− 1}, (7)

and if γℓ
← does not exist, we ignore it in max. The meaning of this formula is to place each interval as far to

the left as possible while maintaining the structure of R′. Figure 11 contains an example of the construction
of R.

Before proving correctness of the construction of R, we show two general properties of the formula (7).
The first lemma states that each interval vi ∈ Γℓ is not placed in R too far from the position of γℓ is R

′.
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Lemma 5.13. For each vi ∈ Γℓ, it holds

ℓγℓ
− 1 ≤ ℓi ≤ ℓγℓ

. (8)

Proof. The first inequality is true since ℓγℓ
− 1 ≤ ℓγℓ

→

− 1 ≤ ℓi holds according to (7) and the ordering ⊳

for R′. The second inequality holds since R′ is a correct bounded representation, and so ℓγℓ
is greater than

or equal to each term in (7). �

The second lemma states that the representations R and R′ are intertwining each other. If R is drawn
on top of R′, then the vertices of each group Γℓ are in between of γℓ−1 and γℓ; see Figure 11.

Lemma 5.14. For each vi ∈ Γℓ and ℓ > 1, it holds

ℓγℓ−1
< ℓi ≤ ℓγℓ

, (9)

Proof. The second inequality holds by (8). For the first inequality, there are two possible cases why the
groups Γℓ−1 and Γℓ are distinct:

• The first case is when γℓ
← is a neighbor of γℓ−1. Then ℓγℓ−1

≤ ℓγℓ
←

+ 1 < ℓi; the first inequality holds

since γℓ
←γℓ−1 ∈ E(G′) and R′ is a correct representation, and the second inequality is given by (7).

• The second case is when γℓ
→ is a non-neighbor of γℓ−1. Then ℓγℓ−1

< ℓγℓ
→

− 1 ≤ ℓi by the fact that

γℓ−1γ
ℓ
→ /∈ E(G′) and by (7).

In both cases, we get ℓγℓ−1
< ℓi. �

Now, we are ready to show correctness of the construction of R.

Proposition 5.15. From the left-most representation R′ of the pruned graph G′, we can construct the
correct left-most representation R of G by placing the intervals according to (7).

Proof. We argue the correctness of the representation R. Let vi and vj be a pair of vertices of G. Let
vivj ∈ E(G). If vi and vj belong to the same group Γℓ, they intersect each other at position ℓγℓ

by (8).
Otherwise let vi ∈ Γℓ and vj ∈ Γℓ′ , and assume that Γℓ < Γℓ′ . Then ℓi ≤ ℓγℓ

≤ ℓj by the intertwining
property (9). Also, ℓj ≤ ℓγℓ′

≤ ℓγℓ
→

≤ ℓi + 1 since γℓ′ is a right neighbor of γℓ and (8). Therefore,
ℓi ≤ ℓj ≤ ℓi + 1 and vi intersects vj in R. Now, let vivj /∈ E(G), vi ∈ Γℓ, vj ∈ Γℓ′ and vi < vj . Then
ℓi ≤ ℓγℓ

≤ ℓγℓ′
←

≤ ℓj − 1− ε by (7) and (8), so vi and vj do not intersect. So the assignment R is a correct
representation of G.

It remains to show that R is the left-most representation of G. We can identify each γℓ with one interval
vi ∈ Γℓ having lbound(vi) = lbound(γℓ); for an example see Figure 11. So G′ can be viewed as an induced
subgraph of G. We want to show that the intervals of G′ are represented in R exactly the same as in
R′. Since R|G′ (which denotes R restricted to G′) is some representation of G′ and R′ is the left-most
representation of G′, we get ℓ′γℓ

≤ ℓγℓ
for every γℓ. By (8), we get ℓ′γℓ

= ℓγℓ
.

We know that R|G′ is the left-most representation, or in other words each interval of G′ is fixed in R.
The rest of the intervals are placed so that they are either trivially fixed by ℓi = lbound(vi), or they have
as obstructions some fixed intervals from G′, in which case they are fixed by Lemma 5.10. Therefore, every
interval of G is fixed and R is the left-most representation. �

R and R′

v1
v2

v3 = γ1
v4 v5 = γ2

v6 v7 = γ3

v8

v9

v10 = γ4

Γ1 Γ2 Γ3 Γ4

Figure 11: Both representations R and R′ in one figure, with the intervals of R′ depicted in bold. The left endpoints of the
intervals of each group are enclosed by dashed curves, and these curves are ordered from left to right according to <.
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Figure 12: Examples of position cycles. In the cycle on the left, we can shift β2 in the clockwise direction towards β6, which
gives a new representation whose position cycle is depicted on the right. We note that after this left-shifting, v6 is not necessarily
an obstruction of v2.

For the pruned graph G′, the obstruction digraph H has in- and out-degree at most two. Each interval
has at most one left obstruction and at most one right obstruction, and these obstructions are always the
same intervals. More precisely, if vj is a left obstruction of vi, then vj = vi←, whereas if vj is a right
obstruction of vi, then vj = vi→.

The pruning operation can be done in time O(n +m), so we may assume that our graph G is already
pruned and contains no indistinguishable vertices. And the structure of obstructions in G can be computed
in time O(n+m) as well.

Position Cycle. For each interval in some ε-grid representation, we can write its position in this form:

ℓi = αi + βiε, αi ∈ Z, βi ∈ ZK , (10)

where ε = 1
K
. In other words, αi is the integer position of vi in the grid and βi describes how far is this

interval from this integer position.
Concerning left-shifting, the values βi are more important. We can depict ZK = {0, . . . ,K−1} as a cycle

with K vertices where the value decreases clockwise. The value βi assigns to each interval vi one vertex of
the cycle. The cycle ZK together with marked positions of βi’s is called the position cycle. A vertex of the
position cycle is called taken if some βi is assigned to it, and empty otherwise. The position cycle allows
us to visualize and work with left-shifting very intuitively. When an interval vi is left-shifted, βi cyclically
decreases by one, so βi moves clockwise along the cycle. For an illustration, see Figure 12.

If (vi, vj) is a left edge of H , then βj = βi − 1, and if (vi, vj) is a right edge, then βi = βj . So if vj
is an obstruction of vi, βj has to be very close to βi (either at the same position or at the next clockwise
position). If there is a big empty space in the clockwise direction from βi, the interval vi can be left-shifted
many times (or till it becomes fixed by ℓi = lbound(vi)). Notice that if βi is very close to βj , it does not
mean that ℓi is very close to ℓj because the values αi and αj are ignored in the position cycle.

5.6. The Shifting Algorithm for BoundRep

We want to solve an instance of BoundRep with a prescribed ordering ◭. We work with an ε-grid
which is different from the one in Section 4.1. The new value of ε is the value given by (1) refined n times,
so

ε =
1

n2
· ε′.

Lemma 4.1 applies for this value of ε as well, so if the instance is solvable, there exists a solution which is
on this ε-grid.

The algorithm works exactly as the algorithm of Subsection 5.1. The only difference is that for a
component with k vertices we can solve the linear program in time O(k2 + kD(r)), and now we describe
how to do it. We assume that the input component is already pruned, otherwise we prune it and use
Proposition 5.15 to complete the representation. We expect that the left-to-right order ⊳ of the vertices
is given. The algorithm requires time O(kD(r)) since the bounds are given in the form pi

qi
and we need to

perform arithmetic operations with these bounds. Therefore the total complexity of the algorithm for the
BoundRep problem is O(n2 + nD(r)).

Overview. The algorithm for solving one linear program works in three basic steps:
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(1) We construct an initial ε-grid representation (in the ordering⊳) having ℓi ≥ lbound(vi) for all intervals,
using the algorithm of Corneil et al. [26].

(2) We shift the intervals to the left while maintaining correctness of the representation until the left-most
representation is constructed, using Proposition 5.9.

(3) We check whether the left-most representation satisfies the upper bounds. If so, we have the left-
most representation satisfying all bound constraints. This representation solves the linear program of
Subsection 5.1 and minimizes Et. Otherwise, the left-most representation does not satisfy the upper
bound constraints. Thus by Lemma 5.7 no representation satisfies the upper bound constraints, and
the linear program has no solution.

Input Size. Let r be the size of the input describing bound constraints. A standard complexity assumption
is that we can operate with polynomially large numbers (having O(log r) bits in binary) in constant time,
to avoid the extra factor O(log r) in the complexity of most of the algorithms. However, the value of ε
given by (1) might require O(r) digits when written in binary. The assumption that we can computate with
numbers having O(r) digits in contant time would break most of the computational models. Therefore, our
computational model requires a larger time for arithmetic operations with numbers having O(r) digits in
binary. For example, the best known algorithm for multiplication/division on a Turing machine requires
time O(D(r)).

The problem is that a straightforward implementation of our algorithm working with the ε-grid would
require time O(k2rc) for some c instead of O(k2 + kD(r)). There is an easy way out. Instead of computing
with long numbers having O(r) digits, we mostly compute with short numbers having just O(log r) digits.
Instead of the ε-grid, we mostly work in a larger ∆-grid where ∆ = 1

n2 . The algorithm computes with
the long numbers only in two places. First, some initial computations concerning the input are performed.
Second, when the shifting makes some interval fixed, the algorithm estimes the final ε-grid position of the
interval. All these computations can be done in total time O(kD(r)) and we describe everything in detail
later.

Left-Shifting. The basic operation of the algorithm is the LeftShift procedure which we describe here.
We deal separately with fixed and unfixed intervals (and some intervals might be fixed initially). Unfixed
intervals are on the ∆-grid and fixed intervals have precise positions calculated on the ε-grid. We place only
unfixed intervals on the position cycle for the ∆-grid. At any moment of the algorithm, each vertex of the
position cycle is taken by at most one βi; this is true for the initial representation and the shifting keeps
this property.

We define the procedure LeftShift(vi) which shifts vi from the position ℓi into a new position ℓ′i such
that the representation remains correct. The procedure LeftShift(vi) consists of two steps:

(1) Since vi is unfixed, it has some βi placed on the position cycle. Let k be such that the vertices
βi + 1, . . . , βi + k of the position cycle are empty and the vertex βi + k+ 1 is taken by some βb. Then
a candidate for the new position of vi is ℓ̄i = ℓi − k∆.

(2) We need to ensure that this shift from ℓi to ℓ̄i is valid with respect to lbound(vi) and the positions of
the fixed intervals. Concerning the lower bound, we cannot shift further than lbound(vi). Concerning
the fixed intervals, the shift is limited by positions of fixed obstructions of vi. If vj is a fixed left
obstruction, we cannot shift further than ℓj + 1 + ε, and if vj′ a fixed right obstruction, we cannot
shift further than ℓj′ − 1.

The resulting position after applying LeftShift(vi) is

ℓ′i = max{ℓ̄i, lbound(vi), ℓj + 1 + ε, ℓj′ − 1}. (11)

Lemma 5.16. If the original representation R is correct, than the LeftShift(vi) procedure produces a
correct representation R′.

Proof. Clearly, the lower bound for vi is satisfied in R′. The shift of vi from ℓi to ℓ′i can be viewed as
a repeated application of the left-shifting operation from Section 5.4. We just need to argue that each
left-shifting operation can be applied till the position ℓ′i is reached.
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If at some point, the left-shifting operation could not be applied, there would have to be some obstruction
vj of vi. There is no unfixed obstruction since all vertices of the position cycle βi + 1, . . . , βi + k are empty.
And vj cannot be fixed as well since we check positions of both possible obstructions. So there is no
obstruction vj . Therefore, by repeated applying the left-shifting operation, the interval vi gets at a position
ℓ′i and the resulting representation is correct. �

After LeftShift(vi), if ℓ̄i is not a strict maximum of the four terms in (11), the interval vi becomes
fixed; either trivially since ℓ′i = lbound(vi), or by Lemma 5.10 since vi becomes obstructed by some fixed
interval. In such a case, we remove βi from the position cycle.

Fast Implementation of Left-Shifting. Since we apply the LeftShift procedure repeatedly, we want
to implement it in time O(1). Considering the terms in (11), the first term ℓ̄i is a short number (on the
∆-grid) and the remaining terms are long numbers (on the ε-grid). We first compare ℓ̄i to the remaining
terms which are three comparisons of short and long numbers and we are going to show how to compare
them in O(1). If ℓ̄i is a strict maximum, we use it for ℓ′i. Otherwise, we need to compute the maximum of
the remaining three terms which takes time O(D(r)). But then the interval vi becomes fixed, and so this
costly step is done exactly k times, and takes the total time O(kD(r)).

Lemma 5.17. With the total precomputation time O(kD(r)), it is possible to compare ℓ̄i to the remaining
terms in (11) in time O(1) per LeftShift procedure.

Proof. Initially, we do the following precomputation for the lower bounds. By the input, we have b lower
bounds given in the form p1

q1
, . . . , pb

qb
as irreducible fractions. For each bound, we first compute its position

(αi, βi) on the ε-grid; see (10).
If lbound(vi) ≪ lbound(vj) for some vertices vi and vj , then lbound(vi) is never achieved since the graph

is connected and every representation takes space at most k. Therefore we can increase lbound(vi) without
any change in the solution of the instance. More precisely, let α = maxαi. Then we modify each bound by
setting αi := max{α − k − 1, αi}. In addition, we shift all the bounds by substructing a constant C such
that each αi − C ∈ [0, k + 1]. Concerning βi, we round the position (αi, βi) down to a position (αi, β̄i) of
the ∆-grid. These precomputations can be done for all lower bounds in time O(kD(r)).

Suppose that we want to find out whether ℓ̄i ≤ lbound(vj) = αj + βj · ε where ℓ̄i is in the ∆-grid. Then
it is sufficient to check whether ℓ̄i ≤ αj + β̄j∆ which can be done in constant time since both αj and β̄j are
short numbers.

When vj becomes fixed, its precise position is computed using (11). Then we compute the values ℓj − 1
and ℓj +1+ ε used in (11) and round them down to the ∆-grid. Using these precomputed values, ℓ̄i can be
compared with the remaining terms in (11) in time O(1). When an interval becomes fixed, time O(D(r)) is
used. Since each interval becomes fixed exactly once, this rounding also takes the total time O(kD(r)). �

Notice that the representation is constructed in a position shifted by C. Later, before checking the upper
bound, we shift the whole representation back.

Initial Representation. Recall that the position cycle has n2 vertices and ∆ = 1
n2 . The algorithm of

Corneil et al. [26] gives a representation in the 1
k
-grid. Using the proof of Lemma 4.1, we construct from it the

initial ∆-grid representation. Then we shift it such that ℓi ≥ lbound(vi) for each vi and ℓi ≤ lbound(vi)+∆
for some vi. For this initial representation, each interval can be shifted to the left in total by at most O(k).

The initial representation obtained from the representation of the algorithm of Corneil et al. [26] places
all intervals in such a way that βi’s are almost positioned equidistantly in the position cycle; refer to the
left-most position cycle in Figure 13. As we say in the description of the LeftShift procedure, we only
require that all βi’s are placed to pairwise different vertices of the position cycle.

Shifting Phases. All shifting of the algorithm is done by repeated application of the LeftShift procedure.
Using Lemma 5.16, we know that the representation created in each step is correct. We apply the procedure
in such a way that each interval is almost always shifted by almost one. The shifting of unfixed intervals
proceeds in two phases:
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• The first phase creates one big gap by clustering all βi’s in one part of the cycle. To do so, we apply
the LeftShift procedure to each interval, in the order given by the position cycle. Of course, some
intervals might become fixed and disappear from the position cycle. We obtain one big gap of size at
least n(n− 1). Again, refer to Figure 13.

• In the second phase, we use this big gap to shift intervals one by one, which also moves the cluster along
the position cycle. Again, if some interval becomes fixed, it is removed from the position cycle. The
second phase finishes when each interval becomes fixed and the left-most representation is constructed.
For an example, see Figure 14.

Putting It All Together. First, we show correctness of the shifting algorithm and its complexity:

Lemma 5.18. For a component having k vertices, the shifting algorithm constructs a correct left-most
representation in time O(k2 + kD(r)).

Proof. First, we argue correctness of the algorithm. The algorithm starts with an initial representation
which is correct and satisfies the lower bounds. By Lemma 5.16, after applying each LeftShift procedure,
the resulting representation is still correct. The algorithm keeps a correct list of fixed intervals which
is increased by shifting. So after finitely many applications of the LeftShift procedure, every interval
becomes fixed, and we obtain the left-most representation.

Concerning complexity, all precomputations take total time O(kD(r)). Using Lemma 5.17, each
LeftShift(vi) procedure can be applied in time O(1) unless vi becomes fixed. The first phase is ap-
plying the LeftShift procedure k − 1 times. In the second phase, each interval is shifted by at least n−1

n

(unless it becomes fixed). Since each interval can be shifted by at most O(k) from its initial position, the
second phase applies the LeftShift procedure O(k2) times. So the total running time of the algorithm is
O(k2 + kD(r)). �

We are ready to prove that BoundRep with a prescribe ordering ◭ can be solved in time O(n2+nD(r)):

Proof (Theorem 1.3). We proceed exactly as in the algorithm of Section 5.1, so we process the compo-
nents C1 ◭ · · · ◭ Cc from left to right, and for each of them we solve two linear programs. For each linear
program, we find the left-most representation using Lemma 5.18, and we test for this representation (shifted
back by C) whether the upper bounds are satisfied. According to Lemma 5.7, the linear program is solvable
if and only if the left-most representation satisfy the upper bounds, and clearly the left-most representation
minimizes Et. The time complexity of the algorithm is O(n2+nD(r)) and the proof of correctness is exactly
the same as in Proposition 5.9. �

We finally present an FPT algorithm for BoundRep with respect to the number of components c. The
algorithm is based on Theorem 1.3.

Proof (Corollary 1.4). There are c! possible left-to-right orderings of the components of G. For each
of them, we can decide in time O(n2 + nD(r)) whether there exists a bounded representation in the order,
using Theorem 1.3. So the total time necessary is O((n2 + nD(r))c!). �
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−
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Figure 13: The position cycle during the first phase, changing from left to right. The first phase clusters the βi’s by moving
β4, β5, β2 and β3 towards β1. When LeftShift(v2) is applied, v2 becomes fixed and β2 disappears from the position cycle.
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β4β5β3
β1

−

β5β3
β1

· · · −

Figure 14: The position cycle during the second phase, changing from left to right. We shift βi’s across the big gap till all βi’s
disappear.

6. Extending Unit Interval Graphs

The RepExt(UNIT INT) problem can be solved using Theorem 1.3. We just need to show that it is a
particular instance of BoundRep in which the ordering ◭ of the components can be derived:

Proof (Theorem 1.5). The graph G contains unlocated components and located components. Similarly
to Section 3, unlocated components can be placed far to the right and we can deal with them using a
standard recognition algorithm.

Concerning located components C1, . . . , Cc, they have to be ordered in R′ from left to right, which
gives the required ordering ◭. We straightforwardly construct the instance of BoundRep with this ◭ as
follows. For each pre-drawn interval vi at position ℓi, we put lbound(vi) = ubound(vi) = ℓi. For the rest
of the intervals, we set no bounds. Clearly, this instance of BoundRep is equivalent with the original
RepExt(UNIT INT) problem. And we can solve it in time O(n2 + nD(r)) using Theorem 1.3. �

7. Conclusions

Assumption on the Input. Almost every graph algorithm is not able to achieve time O(n + m) if the
input is given by an adjacency matrix of the graph. Similarly, to get linear time in Theorem 1.1, we have
to assume that the partial representation of a proper interval graph is given in a nice form.

We say that a partial representation is normalized if the pre-drawn endpoints have positions {1, . . . , 2n}.
This assumption is natural since according to Lemma 3.4, the extendibility of a partial representation
only depends on the left-to-right order of the pre-drawn intervals and not on the precise positions. For a
normalized partial representation, the order <G′ can be computed in time O(n). If the representation is
not given in this way, the algorithm needs an additional time O(k log k) to construct <G′ , where k is the
number of pre-drawn intervals.

Polyhedron Interpretation. Consider the linear program of Section 5.1. The described shifting algorithm
has the following geometric interpretation. When the constraints (4) are omitted, all solutions of the linear
program form an unbounded polyhedron. The initial solution is one point of the polyhedron and the left-most
representation is the vertex of the polyhedron minimizing all values ℓi. One application of the LeftShift
procedure corresponds to decreasing one variable while staying in the polyhedron. The algorithm computes
a Manhatten-like path from the initial solution to the left-most representation consisting of O(n2) shifts.

We believe that the polyhedron has some additional useful structure which might be exploited for con-
structing faster algorithms and might lead to discovering new useful properties of unit interval representa-
tions. It is also an interesting question whether some of our techniques can be generalized to other systems
of difference constraints.

Simultaneous Representations. Let G1, . . . , Gk be graphs having V (Gi) ∩ V (Gj) = I for each i 6= j.
The SimRep(C) problem asks whether there exists representations R1, . . . ,Rk of G1, . . . , Gk (of class C)
which assign the same sets to the vertices of I. This problem was considered in [15] and its relations to the
partial representation extension problem were discussed in [8, 9].
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We believe that it is possible to apply results and techniques to solve these problems for proper and
unit interval graphs. First, one needs to construct simultaneous left-to-right orderings <1, . . . , <k having
the same order on I. Then, we can use linear programming/shifting approach to construct the simultaneous
representation. This is a possible direction of future research.

Open Problem. To conclude the paper, we present two open problems.

Problem 1. Is it possible to solve the problem RepExt(UNIT INT) in faster time than O(n2 + nD(r))?

We consider the other problem as currently the major open problem concerning restricted represen-
tations of graphs. The class of the intersection graphs of arcs of a circle is called circular-arc graphs
(CIRCULAR-ARC); for references see [7]. We ask the following question:

Problem 2. Can the problem RepExt(CIRCULAR-ARC) be solved in polynomial time?

We believe that solving this problem might lead to a better understanding of the class itself. All known
polynomial-time recognition algorithms are quite complex, and construct specific types of representations
called canonical representations. Further, many results concerning circular-arc graphs were later shown to
be false; for instance recently the graph isomorphism problem of circular-arc graphs is again open. To solve
RepExt(CIRCULAR-ARC), the structure of all representations needs to be better understood which could
be a major breakthrough concerning this and other classes.
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[18] P. Angelini, G. D. Battista, F. Frati, V. Jeĺınek, J. Kratochv́ıl, M. Patrignani, I. Rutter, Testing planarity of partially

embedded graphs, in: SODA’10: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
2010, pp. 202–221.

[19] M. Patrignani, On extending a partial straight-line drawing, Int. J. Found. Comput. Sci. 17 (5) (2006) 1061–1070.

26



[20] M. Balko, P. Klavk, Y. Otachi, Bounded representations of interval and proper interval graphs, in: Algorithms and
Computation, Vol. 8283 of LNCS, Springer, 2013, pp. 535–546.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Third Edition, 3rd Edition, The MIT
Press, 2009.
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