Skip to main content

Nonlinear Position Control of DC Motor Using Finite-Horizon State Dependent Riccati Equation

  • Conference paper
Progress in Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 366))

Abstract

DC motors are often used for accurate positioning in industrial machines. Precise equations describing DC motors are nonlinear. Accurate nonlinear control of the motion of the DC motors is required. In this paper, an online technique for finite-horizon nonlinear tracking problems is presented. The idea of the proposed technique is the change of variables that converts the nonlinear differential Riccati equation to a linear Lyapunov differential equation. The proposed technique is effective for wide range of operating points. Simulation results for a realistic DC motor are given to illustrate the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barraud, A.: A new numerical solution of xdot=a1*x+x*a2+d, x(0)=c. IEEE Transaction on Automatic Control 22(6), 976–977 (Dec 1977)

    Google Scholar 

  2. Çimen, T.: Recent advances in nonlinear optimal feedback control design. Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey pp. 460–465 (May 2006)

    Google Scholar 

  3. Çimen, T.: Development and validation of a mathematical model for control of constrained nonlinear oil tanker motion. Mathematical and Computer Modeling of Dynamical Systems 15(1), 1749 (2009)

    MATH  Google Scholar 

  4. Çimen, T.: Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. AIAA Journal of Guidance, Control, and Dynamics 35(4), 1025–1047 (2012)

    Article  Google Scholar 

  5. Chmaj, G., Walkowiak, K.: A p2p computing system for overlay networks. Future Generation Computer Systems 29(1), 242–249 (2013)

    Article  Google Scholar 

  6. Cloutier, J.: State-dependent Riccati equation techniques: An overview. Proc. American Control Conference 2, 932–936 (1997)

    Article  Google Scholar 

  7. Gajic, Z., Qureshi, M.: The Lyapunov matrix equation in system stability and control. New York: Dover Publications (2008)

    MATH  Google Scholar 

  8. Heydari, A., Balakrishnan, S.: Path planning using a novel finite-horizon suboptimal controller. Journal of Guidance, Control, and Dynamics pp. 1–5 (2013)

    Google Scholar 

  9. Khamis, A., Naidu, D.: Nonlinear optimal tracking using finite-horizon state dependent Riccati equation ( SDRE). Proceedings of the 4th International Conference on Circuits, Systems, Control, Signals (WSEAS) pp. 37–42 (August 2013), valencia, Spain

    Google Scholar 

  10. Khamis, A., Zydek, D., Borowik, G., Naidu, D.: Control system design based on modern embedded systems. 14th International Workshop on Computer Aided Systems Theory - EUROCAST 2013 pp. 346–347 (2013), las Palmas de Gran Canaria, Spain

    Google Scholar 

  11. Liu, B., Zydek, D., Selvaraj, H., Gewali, L.: Accelerating high performance computing applications: Using cpus, gpus, hybrid cpu/gpu, and fpgas. In: Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2012 13th International Conference on. pp. 337–342. IEEE (2012)

    Google Scholar 

  12. Naidu, D.: Optimal Control Systems. CRC Press (2003)

    Google Scholar 

  13. Nazarzadeh, J., Razzaghi, M., Nikravesh, K.: Solution of the matrix Riccati equation for the linear quadratic control problems. Mathematical and Computer Modelling 27(7), 51–55 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Neamtu, A., Stoica, A.: A bumpless transfer method for automatic flight control switching. UPB Scientific Bulletin, Series D 74 (2012)

    Google Scholar 

  15. Nguyen, T., Gajic, Z.: Solving the matrix differential Riccati equation: a Lyapunov equation approach. IEEE Trans. Automatic Control 55(1), 191–194 (2010)

    Article  MathSciNet  Google Scholar 

  16. Ramirez, H.: Design of pi controllers for DC-to-DC power supplies via extended linearization. International Journal of Control 51(3), 601–620 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rugh, W., Shamma, J.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shawky, A., Zydek, D., Elhalwagy, Y., Ordys, A.: Modeling and nonlinear control of aflexible-linkmanipulator. Applied Mathematical Modeling (2013)

    Google Scholar 

  19. Zydek, D., Chmaj, G., Chiu, S.: Modeling computational limitations in h-phy and overlay-noc architectures. The Journal of Supercomputing pp. 1–20 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Khamis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khamis, A., Naidu, D.S., Zydek, D. (2015). Nonlinear Position Control of DC Motor Using Finite-Horizon State Dependent Riccati Equation. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds) Progress in Systems Engineering. Advances in Intelligent Systems and Computing, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-319-08422-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08422-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08421-3

  • Online ISBN: 978-3-319-08422-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics