Skip to main content

Distributed Processing Applications for UAV/drones: A Survey

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 366))

Abstract

Distributed Processing Systems are the ones that include multiple devices (which could be of many types, such as PC computers, mobile devices etc.) that have computational and communication capabilities. Their computational power is jointly used for collaborative processing of variety of tasks – and this processing is realized in distributed manner. UAV - Unmanned Aerial Vehicles (also called drones) gain significant attention over recent years. They have been employed to realize multiple tasks such as surveillance or environmental monitoring. First implementations were based on single UAV, later the potential of multiple UAVs collaborating in a team was noticed. Many applications were implemented in distributed manner, using multiple collaborative UAVs and the distributed processing systems principles. In this paper we survey the applications implemented over cooperative teams of UAVs that operate as distributed processing systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zydek, D., Chmaj, G., Chiu, S.: Modeling Computational Limitations in H-Phy and Overlay-NoC Architectures, The Journal of Supercomputing. (2013) doi: 10.1007/s11227-013-0932-9

    Google Scholar 

  2. Baker, M., Buyya, R., Laforenza, D.: Grids and Grid technologies for wide-area distributed computing, Software: Practice and Experience, vol. 32, Issue 15, pp. 1437–1466. (2002)

    MATH  Google Scholar 

  3. Chmaj, G., Walkowiak, K.: Decision Strategies for a P2P Computing System, Journal of Universal Computer Science, vol. 18, no. 5, pp. 599–622. (2012), doi: 10.3217/jucs-018-05-0599

    Google Scholar 

  4. Wada Akihisa, Yamashita Toshiaki, Maruyama Masaaki, Arai Takanari, Adachi Hideo, Tsuji Hirokazu,: A Surveillance System Using Small Unmanned Aerial Vehicle (UAV) Related Technologies, Special Issue on Solving Social Issues Through Business Activities, NEC Technical Journal, Vol.8, No.1. (2013)

    Google Scholar 

  5. Mayerowitz, S.: Amazon.com sees delivery drones as future, Phys.org, The Associated Press, 2013

    Google Scholar 

  6. Winnefeld, J.A., Kendall, F.: Unmanned Systems Integrated Roadmap FY2013-2038, Department of Defense, 14-S-0553, DIANE Publishing Company. (2014)

    Google Scholar 

  7. Long, M., Gage, A., Murphy, R., Valavanis, K.: Application of the Distributed Field Robot Architecture to a Simulated Demining Task, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3193-3200 (2005), doi: 10.1109/ROBOT.2005.1570602

  8. Ryan, A., Xiao, X., Rathinam, S., Tisdale, J., Zennaro, M., Caveney, D., Sengupta, R., Hedrick, J.K.: A Modular Software Infrastructure for Distributed Control of Collaborating UAVs, Proceedings of the AIAA Conference on Guidance, Navigation and Control, (2006)

    Book  Google Scholar 

  9. Tisdale, J., Ryan, A., Kim, Z., Tornqvist, D., Hedrick J.K.: A multiple UAV system for vision-based search and localization, American Control Conference - ACC, pp. 1985-1990 (2008), doi:10.1109/ACC.2008.4586784

  10. Hu, J., Xie, L., Xu, J.: Vision-Based Multi-agent Cooperative Target Search, 12th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 895-900, 2012, doi:10.1109/ICARCV.2012.6485276

  11. Wheeler, M., Schrick, B., Whitacre, W., Campbell, M., Rysdyk, R., Wise, R.: Cooperative Tracking Of Moving Targets By A Team Of Autonomous UAVs, 25th Digital Avionics Systems Conference, IEEE/AIAA, pp. 1-9 (2006), doi:10.1109/DASC.2006.313769

  12. Furukawa T., Bourgault, F., Lavis, B., Durrant-Whyte, H.F.: Recursive Bayesian Search-and-Tracking Using Coordinated UAVs for Lost Targets, Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 2521-2526 (2006), doi:10.1109/ROBOT.2006.1642081

  13. Campbell, M.E., Whitacre, W.W.: Cooperative Tracking Using Vision Measurements on SeaScan UAVs, IEEE Trans. Contr. Sys. Techn. vol. 15, no. 4, pp. 613-626, (2007)

    Article  Google Scholar 

  14. Bethke, B., Valenti, M., How, J.: Cooperative Vision Based Estimation and Tracking Using Multiple UAVs, Advances in Cooperative Control and Optimization Lecture Notes in Control and Information Sciences, vol. 369, pp. 179-189 (2007)

    Article  MATH  Google Scholar 

  15. Kingston, D., Holt, R., Beardy, R., McLain, T., Casbeer, D.: Decentralized Perimeter Surveillance Using a Team of UAVs, IEEE Transactions on Robotics, vol.24, no.6, p.1394-1404 (2008)

    Google Scholar 

  16. Teacy, W.T.L., Nie, J., McClean, S., Parr, G., Hailes, S., Julier, S., Trigoni, N., Cameron, S., Collaborative Sensing by Unmanned Aerial Vehicles, Proceedings of the 3rd International Workshop on Agent Technology for Sensor Networks

    Google Scholar 

  17. Durrant-Whyte, H., Stevens, M.: Data Fusion in Decentralised Sensing Networks, Technical report, Australian Centre for Field Robotics, The University of Sydney, 2001

    Google Scholar 

  18. Sujit, P.B., Beard, R.: Multiple UAV Path Planning using Anytime Algorithms, In proceeding of: American Control Conference, (2009)

    Book  Google Scholar 

  19. Cunningham, C.T., Roberts, R.S.: An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles, IEEE International Conference on Robotics and Automation, vol. 4, pp. 3981-3986 (2001)

    Google Scholar 

  20. Deming, R.W., Perlovsky, L.I.: Concurrent multi-target localization, data association, and navigation for a swarm of flying sensors, Journal Information Fusion, vol. 8, Issue 3, pp. 316-330 (2007), 10.1016/j.inffus.2005.11.001

    Article  Google Scholar 

  21. Rigatos, G.G.: Distributed filtering over sensor networks for autonomous navigation of UAVs, Intelligent Service Robotics, vol. 5, Issue 3, pp. 179-198 (2012)

    Article  Google Scholar 

  22. Vrba, P., Mařík, V., Přeučil, L., Kulich, M., Šišlák, D.: Collision Avoidance Algorithms: Multi-agent Approach, Holonic and Multi-Agent Systems for Manufacturing Lecture Notes in Computer Science, vol. 4659, pp. 348-360 (2007)

    Article  Google Scholar 

  23. Manathara, J.G., Ghose, D.: Reactive collision avoidance of multiple realistic UAVs, Aircraft Engineering and Aerospace Technology, vol. 83, no. 6, pp. 388-396 (2011), doi:10.1108/00022661111173261

    Article  Google Scholar 

  24. Lalish, E., Morgansen, K.A.: Decentralized Reactive Collision Avoidance for Multivehicle Systems, 47th IEEE Conference on Decision and Control, pp. 1218-1224 (2008), doi:10.1109/CDC.2008.4738894

  25. Ren, W., Beard, R.W., Atkins, E.M.: A Survey of Consensus Problems in Multi-agent Coordination, Proceedings of the 2005 American Control Conference, vol. 3, pp. 1859-1864 (2005), doi:10.1109/ACC.2005.1470239

  26. Ren, W., Cao, Y.: Overview of Recent Research in Distributed Multi-agent Coordination, Distributed Coordination of Multi-agent Networks, pp. 23-41 (2011), doi:10.1007/978-0-85729-169-1_2

  27. Inalhan, G., Stipanovid D., Tomlin, C.J.: Decentralized Optimization, with Application to Multiple Aircraft Coordination, Automatica, vol. 40, no. 8, pp.1285-1296 (2004)

    Google Scholar 

  28. Harris, A., Sluss Jr., J.J., Refai, H.H.: Alignment And Tracking Of A Free-Space Optical Communications Link To A UAV, The 24th Digital Avionics Systems Conference, vol. 1 (2005), doi:10.1109/DASC.2005.1563300

  29. Argrow, B., Lawrence, D.: UAV Systems for Sensor Dispersal, Telemetry, and Visualization in Hazardous Environments, AIAA Aerospace Sciences Meeting and Exhibit (2005)

    Google Scholar 

  30. Casbeer, D.W., Kingston, D.B., Beard, R.W., Mclain, T.W.: Cooperative forest fire surveillance using a team of small unmanned air vehicles, International Journal of Systems Science, pp. 1-18 (2005)

    Google Scholar 

  31. Viguria, A., Maza, I., Ollero, A.: Distributed Service-Based Cooperation in Aerial/Ground Robot Teams Applied to Fire Detection and Extinguishing Missions, Advanced Robotics 24, pp. 1–23 (2010)

    Article  Google Scholar 

  32. Scheutz, M., Schermerhorn, P., Bauer, P.: The Utility Of Heterogeneous Swarms Of Simple UAVs With Limited Sensory Capacity In Detection And Tracking Tasks, Proceedings 2005 IEEE Swarm Intelligence Symposium, pp. 257-264 (2005), doi:10.1109/SIS.2005.1501630

  33. Chao, H., Baumann, M., Jensen, A., Chen, Y., Cao, Y., Ren, W., McKee, M.: Band-reconfigurable Multi-UAV-based Cooperative Remote Sensing for Real-time Water Management and Distributed Irrigation Control, International Federation of Automatic Control World Congress, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Chmaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chmaj, G., Selvaraj, H. (2015). Distributed Processing Applications for UAV/drones: A Survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds) Progress in Systems Engineering. Advances in Intelligent Systems and Computing, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-319-08422-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08422-0_66

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08421-3

  • Online ISBN: 978-3-319-08422-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics