Skip to main content

Introduction to the Geometric Theory of ODEs with Applications to Chemical Processes

  • Chapter
Large-Scale Networks in Engineering and Life Sciences

Abstract

We give an introduction to the geometric theory of ordinary differential equations (ODEs) tailored to applications to biochemical reaction networks and chemical separation processes. Quite often, the ordinary differential equations under investigation are “reduced” partial differential equations (PDEs) as in the search of traveling wave solutions. So, we also address ODE topics that have their origin in the PDE context.

We present the mathematical theory of invariant and integral manifolds, in particular, of center and slow manifolds, which reflect the splitting of variables and/or processes into slow and fast ones. The invariance of a smooth manifold is characterized by a quasilinear partial differential equation, and the widely used approximations of invariant manifolds are derived from such PDEs. So we also offer, to some extent, an introduction to quasilinear PDEs. The basic ideas and crucial tools are illustrated with numerous examples and exercises. Concerning the proofs, we confine ourselves to outline the crucial steps and refer, especially in the first three sections, to the literature.

The final Sects. 1.4 and 1.5 on reaction–separation processes and on chromatographic separation present new results, including their proofs. They are the outcome of many fruitful discussions with my colleagues Malte Kaspereit and Achim Kienle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aris, R.: Elementary Chemical Reactor Analysis. Dover, Mineola (1989)

    Google Scholar 

  2. Arrowsmith, D.K., Place, C.M.: An Introduction to Dynamical Systems. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  3. Arrowsmith, D.K., Place, C.M.: Dynamical Systems. Chapman and Hall Mathematics, London (1992)

    Book  MATH  Google Scholar 

  4. Barbosa, D., Doherty, M.F.: A new set of composition variables for the representation of reactive phase diagrams. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 413, 459–464 (1987)

    Article  Google Scholar 

  5. Barbosa, D., Doherty, M.F.: Design and minimum-reflux calculations for single-feed multicomponent reactive distillation columns. Chem. Eng. Sci. 43, 1523–1537 (1988)

    Article  Google Scholar 

  6. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM Classics in Applied Mathematics, vol. 9 (1994)

    Book  MATH  Google Scholar 

  7. Betounes, D.: Partial Differential Equations for Computational Science: With Maple and Vector Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  8. Bohmann, A.: Reaction invariants. Student’s Thesis, University of Magdeburg (2008)

    Google Scholar 

  9. Borghans, J.A.M., deBoer, R.J., Segel, L.A.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    Article  MATH  Google Scholar 

  10. Brauer, F., Castillo-Chavez, C.: Mathematical Methods in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40. Springer, New York (2001)

    Book  Google Scholar 

  11. Bressan, A., Serre, D., Williams, M., Zumbrun, K.: Hyperbolic Systems of Balance Laws. Cetraro, Italy, 2003. Lecture Notes in Mathematics, vol. 1911. Springer, Berlin (2007)

    Book  Google Scholar 

  12. Britton, N.F.: Reaction–Diffusion Equations and Their Applications in Biology. Academic Press, Orlando (1986)

    Google Scholar 

  13. Brunovský, P.: Tracking invariant manifolds without differential forms. Acta Math. Univ. Comen. 65(1), 23–32 (1996)

    MATH  Google Scholar 

  14. Brunovský, P.: C r-inclination theorems for singularly perturbed equations. J. Differ. Equ. 155, 133–152 (1999)

    Article  MATH  Google Scholar 

  15. Canon, E., James, F.: Resolution of the Cauchy problem for several hyperbolic systems arising in chemical engineering. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 9(2), 219–238 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Chicone, C.: Ordinary Differential Equations with Applications. Texts in Applied Mathematics, vol. 34. Springer, New York (1999)

    MATH  Google Scholar 

  17. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory, 2nd edn. Grundlehren, vol. 251. Springer, New York (1996)

    Google Scholar 

  18. Conradi, C., Flockerzi, D.: Multistationarity in mass action networks with applications to ERK activation. J. Math. Biol. 65(1), 107–156 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Conradi, C., Flockerzi, D.: Switching in mass action networks based on linear inequalities. SIAM J. Appl. Dyn. Syst. 11(1), 110–134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Conradi, C., Flockerzi, D., Stelling, J., Raisch, J.: Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci. USA 104(49), 19175–19180 (2007)

    Article  Google Scholar 

  21. Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci. 211, 105–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Doherty, M.F., Malone, M.: Conceptual Design of Distillation Systems. McGraw-Hill, Boston (2001)

    Google Scholar 

  23. Edelstein-Keshet, L.: Mathematical Models in Biology. SIAM Classics in Applied Mathematics, vol. 46 (2005)

    Book  MATH  Google Scholar 

  24. Elnashaie, S.S.E.H., Elshishini, S.S.: Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors. Gordon and Beach Science, Amsterdam (1993)

    Google Scholar 

  25. Evans, L.C.: Partial Differential Equations, 2nd edn. AMS Graduate Studies in Mathematics, vol. 19. AMS, Providence (2010)

    MATH  Google Scholar 

  26. Fall, C.P., Maland, E.S., Wagner, J.M., Tyson, J.J.: Computational Cell Biology. Interdisciplinary Applied Mathematics, vol. 20. Springer, New York (2002)

    MATH  Google Scholar 

  27. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 28. Springer, Berlin (1979)

    MATH  Google Scholar 

  29. Flockerzi, D.: Existence of small periodic solutions of ordinary differential equations in \(\mathbb{R}^{2}\). Arch. Math. 33(3), 263–278 (1979)

    Article  MathSciNet  Google Scholar 

  30. Flockerzi, D.: Bifurcation formulas for ordinary differential equations in \(\mathbb{R}^{n}\). Nonlinear Anal. 5(3), 249–263 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Flockerzi, D.: Weakly nonlinear systems and the bifurcation of higher dimensional tori. In: Equadiff 82. Lecture Notes in Mathematics, vol. 1017, pp. 185–193. Springer, Berlin (1983)

    Chapter  Google Scholar 

  32. Flockerzi, D.: Generalized bifurcation of higher-dimensional tori. J. Differ. Equ. 55(3), 346–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Flockerzi, D., Conradi, C.: Subnetwork analysis for multistationarity in mass action kinetics. J. Phys. Conf. Ser. 138, 012006 (2008)

    Article  Google Scholar 

  34. Flockerzi, D., Sundmacher, K.: On coupled Lane–Emden equations arising in dusty fluid models. J. Phys. Conf. Ser. 268, 012006 (2011)

    Article  Google Scholar 

  35. Flockerzi, D., Bohmann, A., Kienle, A.: On the existence and computation of reaction invariants. Chem. Eng. Sci. 62(17), 4811–4816 (2007)

    Article  Google Scholar 

  36. Flockerzi, D., Kaspereit, M., Kienle, A.: Spectral properties of bi-Langmuir isotherms. Chem. Eng. Sci. 104, 957–959 (2013)

    Article  Google Scholar 

  37. Flockerzi, D., Holstein, K., Conradi, C.: N-site phosphorylation systems with 2N−1 steady states. Bull. Math. Biol. 76, 1892–1916 (2014)

    Article  MathSciNet  Google Scholar 

  38. Forssén, P., Arnell, R., Kaspereit, M., Seidel-Morgenstern, A., Fornstedt, T.: Effects of a strongly adsorbed additive on process performance in chiral preparative chromatography. J. Chromatogr. A 1212, 89–97 (2008)

    Article  Google Scholar 

  39. Gadewar, S.R., Schembecker, G., Doherty, M.F.: Selection of reference components in reaction invariants. Chem. Eng. Sci. 60, 7168–7171 (2005)

    Article  Google Scholar 

  40. Granas, A., Dugundji, J.: Fixed Point Theory. Monographs in Mathematics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  41. Gray, P., ScottS, K.: Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Oxford University Press, Oxford (1990)

    Google Scholar 

  42. Grüner, S., Kienle, A.: Equilibrium theory and nonlinear waves for reactive distillation columns and chromatographic reactors. Chem. Eng. Sci. 59, 901–918 (2004)

    Article  Google Scholar 

  43. Grüner, S., Mangold, M., Kienle, A.: Dynamics of reaction separation processes in the limit of chemical equilibrium. AIChE J. 52(3), 1010–1026 (2006)

    Article  Google Scholar 

  44. Guiochon, G., Felinger, A., Shirazi, D.G., Katti, A.K.: Fundamentals of Preparative and Nonlinear Chromatography, 2nd edn. Elsevier, San Diego (2006)

    Google Scholar 

  45. Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)

    MATH  Google Scholar 

  46. Harrison, G.W.: Global stability of predator–prey interactions. J. Math. Biol. 8, 159–171 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of the Hopf Bifurcation. London Mathematical Society Lecture Notes Series, vol. 41. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  48. Helfferich, F., Klein, G.: Multicomponent Chromatography: Theory of Interference. Marcel Dekker, New York (1970)

    Google Scholar 

  49. Hofbauer, J., Sigmund, K.: Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  50. Holstein, K., Flockerzi, D., Conradi, C.: Multistationarity in sequential distributed multisite phosphorylation networks. Bull. Math. Biol. 75, 2028–2058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Huang, Y.-S., Sundmacher, K., Qi, Z., Schlünder, E.-U.: Residue curve maps of reactive membrane separation. Chem. Eng. Sci. 59, 2863–2879 (2004)

    Article  Google Scholar 

  52. Huang, Y.-S., Schlünder, E.-U., Sundmacher, K.: Feasibility analysis of membrane reactors—discovery of reactive arheotropes. Catal. Today 104, 360–371 (2005)

    Article  Google Scholar 

  53. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2010), paperback edition

    Google Scholar 

  54. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems. Lecture Notes in Mathematics, vol. 1609. Springer, Berlin (1995)

    Chapter  Google Scholar 

  55. Jones, C.K.R.T., Kaper, T., Kopell, N.: Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal. 27(2), 558–577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kaspereit, M.: Optimal synthesis and design of advanced chromatographic process concepts. Habilitationsschrift, University of Magdeburg (2011)

    Google Scholar 

  57. Kaspereit, M., Seidel-Morgenstern, A., Kienle, A.: Design of simulated moving bed processes under reduced purity requirements. J. Chromatogr. A 1162, 2–13 (2007)

    Article  Google Scholar 

  58. Kirchgraber, U., Palmer, K.J.: Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows in Linearization. Pitman Research Notes in Mathematics, vol. 233. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  59. Kirsch, S., Hanke-Rauschenbach, R., El-Sibai, A., Flockerzi, D., Krischer, K., Sundmacher, K.: The S-shaped negative differential resistance during the electrooxidation of H2/CO in polymer electrolyte membrane fuel cells: modeling and experimental proof. J. Phys. Chem. C 115, 25315–25329 (2011)

    Article  Google Scholar 

  60. Klamt, S., Hädicke, O., van Kamp, A.: Stoichiometric and constraint-based analysis of biochemical reaction networks. In: Benner, P., et al. (eds.) Large-Scale Networks in Engineering and Life Sciences. Springer, Heidelberg (2014). Chap. 5

    Google Scholar 

  61. Knobloch, H.W., Kappel, F.: Gewöhnliche Differentialgleichungen. B.G. Teubner, Stuttgart (1974)

    Book  MATH  Google Scholar 

  62. Kumar, A., Josic, K.: Reduced models of networks of coupled enzymatic reactions. J. Theor. Biol. 278, 87–106 (2011)

    Article  MathSciNet  Google Scholar 

  63. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Applied Mathematical Sciences, vol. 112. Springer, New York (1998)

    MATH  Google Scholar 

  64. Kvaalen, E., Neel, L., Tondeur, D.: Directions of quasi-static mass and energy transfer between phases in multicomponent open systems. Chem. Eng. Sci. 40, 1191–1204 (1985)

    Article  Google Scholar 

  65. Lee, C.H., Othmer, H.: A multi-time scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol. 60(3), 387–450 (2010)

    Article  MathSciNet  Google Scholar 

  66. Lindström, T.: Global stability of a model for competing predators. Nonlinear Anal. 39, 793–805 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Meiss, J.D.: Differential Dynamical Systems. SIAM Mathematical Modeling and Computation, vol. 14 (2007)

    Book  MATH  Google Scholar 

  68. Murray, J.D.: Mathematical Biology. Vol. 1: An Introduction, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York (2002)

    Google Scholar 

  69. Murray, J.D.: Mathematical Biology. Vol. 2: Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

    Google Scholar 

  70. Nipp, K.: An algorithmic approach for solving singularly perturbed initial value problems. In: Kircraber, U., Walther, H.O. (eds.) Dynamics Reported, vol. 1. Teubner/Wiley, Stuttgart/New York (1988)

    Chapter  Google Scholar 

  71. Othmer, H.G.: Analysis of Complex Reaction Networks. Lecture Notes. University of Minnesota (2003)

    Google Scholar 

  72. Pandey, R., Flockerzi, D., Hauser, M.J.B., Straube, R.: Modeling the light- and redox-dependent interaction of PpsR/AppA Rhodobacter sphaeroides. Biophys. J. 100(10), 2347–2355 (2011)

    Article  Google Scholar 

  73. Pandey, R., Flockerzi, D., Hauser, M.J.B., Straube, R.: An extended model for the repression of photosynthesis genes by the AppA/PpsR system in Rhodobacter sphaeroides. FEBS J. 279(18), 3449–3461 (2012)

    Article  Google Scholar 

  74. Prüss, J.W., Schnaubelt, R., Zacher, R.: Mathematische Modelle in der Biologie. Mathematik Kompakt. Birkhäuser, Basel (2008)

    Book  MATH  Google Scholar 

  75. Rhee, H.-K., Aris, R., Amundson, N.R.: First-Order Partial Differential Equations: Vol. I—Theory and Application of Single Equations. Dover, Mineola (2001)

    Google Scholar 

  76. Rhee, H.-K., Aris, R., Amundson, N.R.: First-Order Partial Differential Equations: Vol. II—Theory and Application of Hyperbolic Systems of Quasilinear Equations. Dover, Mineola (2001)

    Google Scholar 

  77. Robinson, C.: Dynamical Systems, 2nd edn. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  78. Rubiera Landa, H.O., Flockerzi, D., Seidel-Morgenstern, A.: A method for efficiently solving the IAST equations with an application to adsorber dynamics. AIChE J. 59(4), 1263–1277 (2012)

    Article  Google Scholar 

  79. Schaber, J., Lapytsko, A., Flockerzi, D.: Nesed auto-inhibitory feedbacks alter the resistance of homeostatic adaptive biochemical networks. J. R. Soc. Interface 11, 20130971 (2014)

    Article  Google Scholar 

  80. Segel, L.A., Goldbeter, A.: Scaling in biochemical kinetics: dissection of a relaxation oscillator. J. Math. Biol. 32, 147–160 (1994)

    Article  MATH  Google Scholar 

  81. Segel, L.A., Slemrod, M.: The quasi–steady state assumption: a case study in perturbation. SIAM Rev. 31(3), 446–477 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  82. Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Interdisciplinary Applied Mathematics, vol. 5. Springer, New York (2010)

    Book  MATH  Google Scholar 

  83. Smith, H., Waltman, P.: The Theory of the Chemostat. Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  84. Steerneman, T., van Perlo-ten Kleij, F.: Properties of the matrix AXY . Linear Algebra Appl. 410, 70–86 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  85. Storti, G., Mazzotti, M., Morbidelli, M., Carra, S.: Robust design of binary countercurrent adsorption separation processes. AIChE J. 39, 471–492 (1993)

    Article  Google Scholar 

  86. Straube, R., Flockerzi, D., Müller, S.C., Hauser, M.J.B.: Reduction of chemical reaction networks using quasi-integrals. J. Phys. Chem. A 109, 441–450 (2005)

    Article  Google Scholar 

  87. Straube, R., Flockerzi, D., Müller, S.C., Hauser, M.J.B.: The origin of bursting pH oscillations in an enzyme model reaction system. Phys. Rev. B 72, 066205 (2005)

    Article  Google Scholar 

  88. Straube, R., Flockerzi, D., Hauser, M.J.B.: Sub-Hopf/fold-cycle bursting and its relation to (quasi-)periodic oscillations. J. Phys. Conf. Ser. 55, 214–231 (2006)

    Article  Google Scholar 

  89. Ung, S., Doherty, M.F.: Vapor-liquid phase equilibrium in systems with multiple chemical reactions. Chem. Eng. Sci. 50, 23–48 (1995)

    Article  Google Scholar 

  90. Ung, S., Doherty, M.F.: Synthesis of reactive distillation systems with multiple equilibrium chemical reactions. Ind. Eng. Chem. Res. 34, 2555–2565 (1995)

    Article  Google Scholar 

  91. Ung, S., Doherty, M.F.: Calculation of residue curve maps for mixtures with multiple equilibrium chemical reactions. Ind. Eng. Chem. Res. 34, 3195–3202 (1995)

    Article  Google Scholar 

  92. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Kirchgraber, U., Walther, H.O. (eds.) Dynamical Systems, vol. 2. Teubner/Wiley, Stuttgart/New York (1989)

    Google Scholar 

  93. Vu, T.D., Seidel-Morgenstern, A., Grüner, S., Kienle, A.: Analysis of ester hydrolysis reactions in a chromatographic reactor using equilibrium theory and a rate model. Ind. Eng. Chem. Res. 44, 9565–9574 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Flockerzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flockerzi, D. (2014). Introduction to the Geometric Theory of ODEs with Applications to Chemical Processes. In: Benner, P., Findeisen, R., Flockerzi, D., Reichl, U., Sundmacher, K. (eds) Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08437-4_1

Download citation

Publish with us

Policies and ethics