Skip to main content

Minimal Designs of Reversible Sequential Elements

  • Conference paper
Book cover Reversible Computation (RC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8507))

Included in the following conference series:

Abstract

In this paper we propose minimal designs of reversible sequential elements. The proposed designs have been synthesized using exact multiple control Toffoli network synthesis algorithm with SAT/SMT techniques. The designs have minimal gate count, minimal garbage bits, optimal quantum cost and optimal delay. The optimized sequential circuits are compared with results from earlier proposals. For a fair comparison, previous circuits designed using non-standard gates are converted into equivalent minimal NCT circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Vos, A., Desoete, B., Adamski, A., Pietrzak, P., Sibinski, M., Widerski, T.: Design of reversible logic circuits by means of control gates. In: Soudris, D.J., Pirsch, P., Barke, E. (eds.) PATMOS 2000. LNCS, vol. 1918, pp. 255–264. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Merkle, R.C.: Two types of mechanical reversible logic. Nanotechnology 4, 114–131 (1993)

    Article  Google Scholar 

  3. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  Google Scholar 

  4. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: Dna computing, sticker system and universality. Acta Informatica 35, 401–420 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New Delhi (2002)

    Google Scholar 

  6. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 7, 525–532 (1973)

    Article  Google Scholar 

  8. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  9. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Research and Development 32, 16–23 (1988)

    Article  Google Scholar 

  10. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theo. Phys. 21, 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Picton, P.: Multivalued sequential logic design using fredkin gates. MVL Journal 1, 241–251 (1996)

    MATH  Google Scholar 

  12. Thapliyal, H., Shrinivas, M.B., Zwolinsky, M.: A beginning in the reversible logic synthesis of sequential circuits. In: Proc. of Military and Aerospace Programmable Logic Devices (MAPLD) International Conference, Washington D.C. (2005)

    Google Scholar 

  13. Thapliyal, H., Vinod, A.P.: Design of reversible sequential elements with feasibility of transistor implementation. In: Proc. of the 2007 IEEE International Symposium on Circuits and Systems, ISCAS, p. 625 (2007)

    Google Scholar 

  14. Banerjee, A., Pathak, A.: On the synthesis of sequential circuits. arXiv:quant-ph, 0707.4233v1, pp. 1–9 (2007)

    Google Scholar 

  15. Chuang, M., Wang, C.: Synthesis of reversible sequential elements. J. Emerg. Technol. Comput. Syst. 3, 19.1–19.19 (2008)

    Google Scholar 

  16. Thapliyal, H., Ranganathan, N.: Design of reversible latches optimized for quantum cost, delay and garbage outputs. In: Proc. of 23 Int. Conf. on VLSI Design (2010)

    Google Scholar 

  17. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay and garbage outputs. ACM J. on Emerging Technologies in Computer Science 6, 1–14 (2010)

    Article  Google Scholar 

  18. Sayeem, A.S.M., Ueda, M.: Optimization of reversible sequential circuits. J. of Computing 2, 208–214 (2010)

    Google Scholar 

  19. Banerjee, A.: Synthesis, optimization and testing of reversible and quantum circuits. PhD thesis, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, India (March 2011)

    Google Scholar 

  20. Bhagyalakshmi, H.R., Ventatesha, M.K.: Design of sequential circuit elements using reversible logic gates. World Applied Programming 2, 263–271 (2012)

    Google Scholar 

  21. Mamun, M.S.A., Mandal, I., Hasanuzzaman, M.: Efficient design of reversible sequential circuit. IOSR J. of Comp. Engg. 5, 42–47 (2012)

    Article  Google Scholar 

  22. Singla, P., Gupta, A., Bhardwaj, A., Basia, P.: An optimized design of reversible sequential digital circuit. In: Proceedings of NCET (2013)

    Google Scholar 

  23. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. IEEE Trans. on CAD 28, 703–715 (2009)

    Article  Google Scholar 

  24. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: A toolkit for reversible circuit design. In: Workshop on Reversible Computation (2010), http://www.revkit.org

  25. Rice, J.E.: An introduction to reversible latches. The Computer Journal 51, 700–709 (2008)

    Article  Google Scholar 

  26. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

  27. Brien, J.L.O., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003)

    Article  Google Scholar 

  28. Maslov, D., Dueck, G.W., Scott, N.: Reversible logic synthesis benchmark page (2007)

    Google Scholar 

  29. Haghparast, M., Mohammadi, M., Kavi, K., Eshghi, M.: Optimized reversible multiplier circuit. J. Circuits Syst. Comp. 18, 1–13 (2009)

    Article  Google Scholar 

  30. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Information Technology J. 8, 208–213 (2009)

    Article  Google Scholar 

  31. Dueck, G.W., Maslov, D.: Reversible function synthesis with minimum garbage outputs. In: Proc. International Symposium on Representations and Methodology of Future Computing Technologies, pp. 154–161 (2003)

    Google Scholar 

  32. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: 40th Proc. of International Symposium on Multi-Valued Logic, pp. 217–222 (2010)

    Google Scholar 

  33. Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53, 2855–2856 (1996)

    Article  MathSciNet  Google Scholar 

  34. Kaye, P., Laflamme, R., Mosca, M.: An introduction to quantum computing. Oxford University Press, New York (2007)

    MATH  Google Scholar 

  35. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum information Process 8, 297–318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. Proc. Computer-Aided Design of Integrated Circuits and Systems 27, 436–444 (2008)

    Article  Google Scholar 

  37. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Int. J. Unconventional Computing 1, 339–355 (2005)

    Google Scholar 

  38. Banerjee, A., Pathak, A.: An algorithm for minimization of quantum cost. Appl. Math. Inf. Sci. 6, 157–165 (2012)

    Google Scholar 

  39. Rahman, M. M., Dueck, G.W., Banerjee, A.: Optimization of reversible circuits using reconfigured templates. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 43–53. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  40. Biswas, A.K., Hasan, M.M., Chowdhury, A.R., Babu, H.: Efficient approaches for designing reversible binary coded decimal adders. Microelectron. J. 39, 1693–1703 (2008)

    Article  Google Scholar 

  41. Rice, J.E.: A new look at reversible memory elements. In: Proc. of International Symposium on Circuits and Systems ISCAS, p. 1243 (2006)

    Google Scholar 

  42. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  Google Scholar 

  43. Banerjee, A., Pathak, A., Mazder, R.R., Dueck, G.W.: Two qubit quantum gates to reduce the quantum cost of reversible circuit. In: 41st International Symposium on Multivalued Valued Logic (May 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Banerjee, A., Pathak, A., Dueck, G.W. (2014). Minimal Designs of Reversible Sequential Elements. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08494-7_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08493-0

  • Online ISBN: 978-3-319-08494-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics