Skip to main content

Mapping NCV Circuits to Optimized Clifford+T Circuits

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8507))

Abstract

The need to consider fault tolerance in quantum circuits has led to recent work on the optimization of circuits composed of Clifford+T gates. The primary optimization objectives are to minimize the T-count (number of T gates) and the T-depth (the number of groupings of parallel T gates). These objectives arise due to the high cost of the fault tolerant implementation of the T gate compared to Clifford gates. In this paper, we consider the mapping of a circuit composed of NOT, Controlled-NOT and square-root of NOT (NCV) gates to an equivalent circuit composed of Clifford+T gates. Our approach is heuristic and proceeds through three phases: (i) mapping a circuit of NCV gates to a Clifford+T circuit; (ii) optimization of the placement of the T gates in the Clifford+T circuit; and (iii) optimization of the subcircuits between T gate groupings. The approach takes advantage of earlier work on the optimization of NCV circuits. Examples are presented to show the approach presented here compares well with other approaches. Our approach does not add ancilla lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AlFailakawi, M., AlTerkawi, L., Ahmad, I., Hamdan, S.: Line ordering of reversible circuits for linear nearest neighbour realization. Qunatum Inf. Process. 12, 3319–3339 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning, arXiv:quant-ph/1303.2042v2 (2013)

    Google Scholar 

  3. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD 32(6), 818–830 (2013)

    Article  Google Scholar 

  4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  5. Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.: New limits on fault-tolerant quantum computation. In: Foundations of Computer Science, vol. 27, pp. 411–419. IEEE Computer Society (2006)

    Google Scholar 

  6. Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis of reversible circuits by graph partitioning. CoRR, arXiv:1112.0564v2 (2012)

    Google Scholar 

  7. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    Article  Google Scholar 

  8. Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum Boolean circuits. Engineering Letters 16, 1–5 (2008)

    Google Scholar 

  9. Lukac, M.: Quantum Inductive Learning and Quantum Logic Synthesis. BiblioLabsII (2011)

    Google Scholar 

  10. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. CAD 27(3), 436–444 (2008)

    Article  Google Scholar 

  11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  12. Patel, K., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Information and Computation 8(3&4), 282–294 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Sasanian, Z., Miller, D.M.: Mapping a multiple-control Toffoli gate cascade to an elementary quantum gate circuit. Multiple-Valued Logic and Soft Computing 18(1), 83–98 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Selinger, P.: Quantum circuits of T-depth one. Phys. Rev. A 87, 042302 (2013)

    Google Scholar 

  15. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE Trans. on CAD 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  16. Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the Pauli matrices. Phys. Rev. A 88, 042322 (2013)

    Google Scholar 

  17. Soeken, M., Thomsen, M.K.: White dots do matter: Rewriting reversible logic circuits. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 196–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Weinstein, Y.S.: Non-fault tolerant T-gates for the [7,1,3] quantum error correction code. Phys. Rev. A 87, 032320 (2013)

    Google Scholar 

  19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib is available at www.revlib.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Miller, D.M., Soeken, M., Drechsler, R. (2014). Mapping NCV Circuits to Optimized Clifford+T Circuits. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08494-7_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08493-0

  • Online ISBN: 978-3-319-08494-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics