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Abstract. Quantum computing promises a new approach to solving
difficult computational problems, and the quest of building a quan-
tum computer has started. While the first attempts on construction
were succesful, scalability has never been achieved, due to the inherent
fragile nature of the quantum bits (qubits). From the multitude of ap-
proaches to achieve scalability topological quantum computing (TQC) is
the most promising one, by being based on an flexible approach to error-
correction and making use of the straightforward measurement-based
computing technique. TQC circuits are defined within a large, uniform,
3-dimensional lattice of physical qubits produced by the hardware and
the physical volume of this lattice directly relates to the resources re-
quired for computation. Circuit optimization may result in non-intuitive
mismatches between circuit specification and implementation. In this pa-
per we introduce the first method for cross-level validation of TQC cir-
cuits. The specification of the circuit is expressed based on the stabilizer
formalism, and the stabilizer table is checked by mapping the topology
on the physical qubit level, followed by quantum circuit simulation. Sim-
ulation results show that cross-level validation of error-corrected circuits
is feasible.

Keywords: validation, quantum computing, topological quantum com-
puting

1 Introduction

Building a large scale quantum computer has been the focus of a large interna-
tional effort for the past two decades. The fundamental principles of quantum
information have been well established [1] and experimental technologies have
demonstrated the basic building blocks of a quantum computer [2]. A significant
barrier to large scale devices is the inherent fragility of quantum-bits (qubits) and
the difficulty to accurately control them. The intrinsic error rates of quantum
components necessitates complicated error correction protocols to be integrated
into architecture designs from the beginning, and it’s these protocols that con-
tribute to the majority of physical resources (both in terms of total number of
physical qubits and total computational time) necessary for useful algorithms.

Topological Quantum Computation (TQC) [3,4] has emerged as arguably
the most promising error correction model to achieve large scale quantum in-
formation processing. This model incorporates a powerful error correction code
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and has been shown to be compatible with a large number of physical systems
[5,6]. While experimental technology is not yet of sufficient size to implement
the full TQC model, there have been demonstrations of small scale systems and
no fundamental issue prevents further expansion to a fully scalable quantum
computer.

The TQC hardware is responsible for producing a generic 3-dimensional lat-
tice of qubits, and programming in the TQC model can be separated from the
basic functionality of the quantum hardware. Programming a TQC computer re-
quires systematic methods, which are formulated starting from the TQC design
stack (Figure 1b) [5]. The stack consists of several abstraction levels that differ
from the ones used in classical circuit design. The high level quantum algorithm
is first decomposed into a quantum circuit. This circuit does not include any
error correction protocols; these can be implemented in multiple ways, leading
to circuits requiring a differing number of qubits and/or computational times.
We then identify each qubit in the circuit, as logically encoded with the topo-
logical code. This transforms each logical qubit into a large number of physical
qubits allowing for the implementation of correction protocols. Such protocols
also restrict the types of operations that can be performed on logical data, hence
the quantum circuit needs to be further decomposed into gates from an universal
set, but which can also be realized within the code. Once these decompositions
are complete, the resulting TQC circuit needs to be optimized with respect to
the physical resources and then translated to the physical operations sent to the
hardware.

The qubit-lattice produced by the hardware embeds the topological quantum
circuit and therefore it’s physical size (volume) directly relates to the number of
physical qubits employed for computation. The computation can be constructed
from the circuit in a straightforward, yet suboptimal, way [7] (i.e. it will occupy
a 3-dimensional volume much larger than required). The primary goal of TQC
circuit synthesis is to construct an automated procedure that not only performs
the required translation from circuit to topological circuit, but also to optimize
the volume of these structures to ultimately reduce physical resources needed by
the hardware. An example of an optimized circuit is presented in Figure 1a.

Validation of topological circuits is therefore a necessity, as optimized circuits
often bare little resemblance to their original specification (e.g. Figure 1a). Val-
idation has to be automated, as large topological circuits are complex objects,
where the gate list is difficult to be extracted, and unfeasible to verify manually.

In this paper, we introduce the first automated validation method for TQC
circuits. The input of the method is a quantum circuit specification, and the
procedure verifies that an instance of the quantum circuit exhibits the same
functionality as the specification.

For this purpose, we show that the validation problem can be mapped to
an equivalent problem that can be efficiently simulated. Direct simulation is
necessary to confirm that the topological structure correctly implements the
desired circuit. Note that the simulator checks functionality of the topological
structure, and it does not simulate error correction within the computation, as
this is unnecessary for circuit validation.
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(a) Original and compressed TQC circuits
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(b) The TQC design stack

Fig. 1. Topological Quantum Computation (TQC)

2 Background

Quantum circuits are defined as series of quantum gates applied to transform
the state of qubits. Classical bits can be either 0 or 1, while a qubit can have an
infinity of states that can be visually represented as points on the surface of a
unit sphere (the Bloch sphere). Quantum computing is based on the postulates
of quantum mechanics: the state space of a quantum system (for our discussion a
quantum computer operating on n qubits) is a complex space, where the system’s
state is represented by unit vectors. For example, the state of a single qubit is
represented by a complex vector of length 2, and the 2n-dimensional state of all
n qubits is the tensor product of the component one-qubit states. The difficulty
of simulating a general quantum system using a classical computer stems from
the exponential increase of the state representation requirements. For example,
the possible states of a two-qubit quantum computer where each input qubit is
initialized to the |0〉 = (1, 0)T state is represented using 22 complex numbers
(1, 0, 0, 0)T . The complex entries of the state vector are called probability am-
plitudes, and arbitrary tensor products of |0〉 and |1〉 = (0, 1)T (e.g. |000〉, |100〉,
|1111〉) are called computational-basis-states.

In the quantum circuit formalism, the evolution of the quantum computer’s
state is dictated by the sequential application of quantum gates. The state, after
the application of each quantum gate, is modeled as the outcome of a matrix-
vector multiplication, thus the probability amplitudes of each computational
basis state are transformed. For this reason, quantum gates can be understood
as unitary complex matrices. Single-qubit quantum gates are 2 × 2 complex
matrices, while n-qubit gates are 2n× 2n complex matrices. The following gates
are particularly relevant for our work.

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

) H = 1√
2

(
1 1
1 −1

)
T =

(
1 0
0 e−iπ/4

) CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


A two-qubit controlled-gate is applied to two qubits, where one of the qubits

is left unchanged, but controls (given its state) the application of a single-qubit
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gate on to the second qubit. One such gate is the CNOT (Controlled-X) gate,
where the first qubit is the control-qubit, and the second-qubit is the target-
qubit. Only when the control-qubit is |1〉 the state of the target qubit is flipped
(e.g. |0〉 becomes |1〉). Because of its action, the X-gate is called the bit-flip gate.

One of the major differences between classical and quantum computation
is the concept of superposition. A qubit is a superposition, if more then one
computational basis-state amplitudes is different than zero. The Hadamard gate
can be used to construct the |+〉 and |−〉 superpositions, because |+〉 = H|0〉 =
1√
2
(|0〉+ |1〉) and |−〉 = H|1〉 = 1√

2
(|0〉+ |1〉). Furthermore, the state of at least

two qubits is entangled if their composite state cannot be written as a tensor
product. For example, if the CNOT is applied to the |0〉|+〉 = |0+〉 state, the
result 1√

2
(|00〉 + |11〉) is representing both a superposition and an entangled

pair of qubits. Similarly to the X-gate, the Z-gate is called the phase-flip gate,
because when applied to a single qubit it flips the sign of the so-called relative
phase (e.g. |+〉 is transformed into |−〉).

In general, arbitrary quantum computations can be mapped to a discrete set
of gates consisting of {(H,Z,X, T,CNOT} with any desired accuracy. The H
gate is used to construct superpositions, the CNOT to construct entanglement
and the T gate is used to achieve arbitrary single-qubit state rotations (visualized
as point rotations on the Bloch sphere surface).

2.1 Stabilizer Formalism

The exponential difficulty of describing the evolution of a quantum system orig-
inates from the fact that, by incrementing the number of qubits operated on, an
exponential increase of the state-space is required. There is a particular type of
quantum computations for which this can be overcome by employing the stabi-
lizer formalism. Because |0〉 is an eigenvector with eigenvalue 1 of Z it is said that
|0〉 is stabilized by Z, and, similarly, |1〉 is stabilized by −Z. Furthermore, using
the same idea, |+〉 is stabilized by X and |−〉 is stabilized by −X. Stabilizer
circuits are circuits that can be decomposed into the gates {X,Z, P,H,CNOT}
where P = T × T . The identity matrix I stabilizes any state, while −I is not
a valid stabilizer. The state of such a circuit can be expressed by its stabilizers,
and it was shown that for n-qubit circuits n stabilizers are required instead of
2n-dimensional complex amplitude vectors [1]. A stabilizer table ST is an n× n
table consisting of n independent stabilizers for the n qubits of a computation
(e.g. see Figure 3a). The system’s evolution of states is based on simple transi-
tion rules (e.g. applying a H gate on a qubit stabilized by X, results in the state
being stabilized by Z).

Initial state:|+〉|+〉|0〉 ;ST = {XII, IXI, IIZ}
H1→ |0〉|+〉|0〉 ;ST = {ZII, IXI, IIZ}

CNOT2,3→ |0〉(|00〉+ |11〉) ;ST = {ZII, IXX, IZZ}
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The application of some gates, including the T gate, cannot be expressed
in a simple manner using the stabilizer formalism. Its application to a state
stabilized by X results in a state stabilized by a superposition of stabilizers: X+Y√

2
,

where Y = iXZ. Thus, simulating a circuit with T gates using the stabilizer
formalism requires doubling the set of stabilizers each time a T is encountered.
The application of T gates results in an exponential increase of the state space
to be observed. The set of stabilizing gates together with the T gate form an
universal gate set, meaning that an arbitrary quantum circuit can be expressed
by its stabilizer sub-circuits and a number of applications of T gates (at the
expense of an exponential increase in computational resources).

2.2 Measurement-based Quantum Computing

Arbitrary quantum computations can be mapped to the measurement-based
quantum computing paradigm (MBQC). MBQC utilizes an entangled ensem-
ble of qubits (cluster) as a computational resource that is measured qubit-wise
to perform quantum computations. During the measurement-process it is not
necessary to apply any entangling gates, because the cluster is used as the en-
tanglement resource.

In general, measuring a qubit is a probabilistic process dictated by the prob-
ability amplitudes of its state. When a qubit is measured in the computational
basis (the Z-basis) the qubit’s state collapses to either |0〉 or |1〉, and when a qubit
is measured in the X-basis the possible outcomes are |+〉 and |−〉. Furthermore, it
is possible to perform rotated measurements, meaning that first the qubit’s state
is rotated and then an X- or Z-basis measurement is performed. In measurement-
based computing, the T gate can be applied by using a rotated measurement.
Two qubits |t〉 = 1√

2
(|0〉 + r|1〉) (where r = e

i·π
4 ) and |q〉 = a|0〉 + b|1〉 are

entangled using CNOT resulting in |tq〉 = a|00〉 + ar|11〉 + b|01〉 + br|10〉. The
first qubit’s Z-measurement will transform the second qubit’s state as if it were
directly rotated by T : a|0〉+r|1〉 or a|1〉+r|0〉 (this result can be corrected using
an X gate) [1].

From the perspective of MBQC, only X- and Z-basis measurements are nec-
essary, iff the cluster to be measured contains already rotated qubits (called
injected qubits or injection points). This is a technological detail that enables
us to both simplify the definition of the computing paradigm, and also to limit
the number of qubit states from the initial cluster to only two states: |+〉 and
|A〉 = 1√

2
(|0〉+ ei

π
4 |1〉).

In the context of MBQC, the observation, that arbitrary circuits are formed
by stabilizer sub-circuits and applications of T gates, can be further refined by
noting that arbitrary circuits are formed by only a stabilizer sub-circuit (respon-
sible for entangling the cluster-qubits) and another sub-circuit for measuring the
cluster-qubits.

2.3 Topological Quantum Computation

One of the most promising approaches to construct a practical scalable fault-
tolerant quantum computer, is based on the topological error-correction code.
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This code lays at the foundation of topological quantum computing (TQC),
which is a measurement-based quantum computing model. In the following a
very short introduction to TQC will be offered, while more details are to be
found in [4,3].

The TQC cluster has a repeating 3D graph structure, which is obtained by
stacking a unit-cell along the three axis (width, height and time). The temporal
axis is dictated by the order of performing the measurements. The unit-cell is
constructed from 18 physical qubits (initialized into |+〉) and entangled using
the Controlled-Z gate according to the pattern indicated in Figure 2a. Morever,
for example, by constructing a 2 × 2 × 2 cluster of unit-cells, in the middle of
the cluster another unit-cell arises. The initial 8 cells are known as primal cells,
and the central cell is called a dual cell.

Logical qubits are encoded into the cluster by disconnecting individual cluster-
qubits (achieved via Z-basis measurement). Logical qubits are defined as pairs
of defects, where each defect is a trail of ”disconnected” physical cluster-qubits,
and furthermore it can be geometrically abstracted (e.g. Figure 1a). Cluster
defects introduce degrees of freedom into the cluster, allowing for the storage
of error-protection information. Due to the duality of the graph-structure, two
types of logical qubits can be encoded: primal and dual logical qubits, depending
on whether qubits are removed from the primal or the dual space.

A logical qubit has a quantum state which is protected against the errors, and
the quantum gates can be implemented in a fault-tolerant manner directly on
the logical qubits. The logical CNOT gate is always defined on logical qubits of
opposite types, but it is still possible to define a logical CNOT between qubits
of the same type by using the circuit identities presented in [3]. Initializing
and measuring logical qubits is performed by constructing the defect geometries
presented in Figure 2b.

A correlation surface is a stabilizer defined over the cluster qubits that con-
nect the logical operators of the circuit’s inputs to the logical operators of the
outputs, such that information is propagated correctly during the circuit opera-
tion [3]. The geometrical arrangements of the physical cluster qubits forming a
correlation surface are of two possible types: sheets and tubes (see Figure 3b),
and the physical cluster-qubits will be always measured in the X-basis. Sheets
are spanned between logical qubit defects, while tubes encircle a given defect.
The cumulative parity of their measurement indicates how the logical stabilizers
of the logical qubits are to be interpreted. The measurement parity of a corre-
lation surface is defined starting from the measurement results of the physical
qubits in the surface. The measurement results of an individual qubit are eigen-
vectors, with associated eigenvalues, of the measurement operator, and 1 and
−1 are the two possible eigenvalues for the X-measurement. The measurement
parity along a correlation surface is the product of the resulting associated eigen-
values. Finding a correlation surface that connects the logical operators is not to
be further detailed into this work, because the methods enabling it are explained
in [3].

In TQC the computational universality is achieved by employing injection
points in a similar way how the rotational gate T is applied by teleportation
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as introduced in the context of MBQC. The TQC injection points are cluster

qubits initialized into the |A〉 state (defined in Section 2.2) or |Y 〉 = |0〉+i|1〉√
2

state.

Because TQC is an instance of MBQC, logical gate teleportation is achieved by
measuring the logical qubits that encode injected states.

3 Validation of TQC Circuits

In order to formulate the cross-level validation of TQC circuits, we start with a
consideration of generic (non-TQC) measurement-based fault-tolerant quantum
circuits. An arbitrary quantum circuit can be mapped to a construction from a
stabilizer sub-circuit followed by a non-stabilizer sub-circuit that contains only
rotated measurements. An adequate MBQC-oriented specification of such a ”de-
composed” quantum circuit is the tuple QCS = {ST, J,M}, where ST is the
stabilizer table of the stabilizer sub-circuit, J is the set of injection points, and
M is the ordered set of measurements of these injection points. Given an imple-
mentation QC that is also mapped to a tuple {ST ′, J ′,M ′}, we are interested in
equivalence of both descriptions (QC ≡ QCS). If we assume that the number of
injection points and their measurement is not changed, as it will directly affect
the computation being performed, this question is reduced to the equivalence
checking of the stabilizer circuit parts (ST ≡ ST ′), which has previosusly been
investigated in the context of reversible computing [8].

However, checking the equivalence of a TQC description against the spec-
ification QCS is more challenging because no complete procedure to translate
the geometric description of the topological circuit to the stabilizer table is cur-
rently known. In the following, we outline the cross-level approach which checks
equivalence without constructing the stabilizer table.

3.1 Problem Statement

In the context of TQC, the stabilizers and the gates are defined at a logical
level, which is constructed on top of the cluster-state level (physical qubits).
The specification of the circuit (QCS or, more exactly, the stabilizer table of its
portion ST ) refers to the logical level. In order to check the equivalence of the
geometric description against QCS, we map the logical qubits to the cluster state
and validate it by simulation. This is done in two steps. First, the geometrical
description is mapped to an (unmeasured) cluster. The mapping method can be
derived from [9], and the details are omitted here. Then, for every entry of the
stabilizer table ST from the specification, the topological computation in the
cluster is simulated using a (stabilizer) quantum circuit simulator. Note that the
simulated geometry is largely given by the shapes of the logical qubits which are
independent from the processed ST entry. Moreover, the ST entry determines
the initialization and measurement parts of the logical qubits (see Figure 2b).

In the following paragraphs the validation procedure will be detailed and
analyzed.
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(a) (b)

Fig. 2. TQC constructs: a) the unit-cell of 18-entangled qubits, and the two repeating
layers that are simulate. b) Defect geometries for initialization of primal logical qubits:
1. Z-basis initialisation 2. X-basis initialisation 3. injection point. The defect geometries
for measurement are similar.

3.2 Validation Procedure

The cross-validation of circuits is a simulation based procedure of a cluster where
the geometric description of the TQC circuit was mapped. Algorithm 1 is syn-
thesizing the details that are presented in the following.

The validation method starts by mapping the geometry to a cluster (Lines
1, 2). The set TQCC = {(x, y, z)| x, y, z ∈ N,measure(x, y, z) ∈ {X,Z},
init(x, y, z) ∈ {|+〉, |A〉, |Y 〉}} is specified as a finite set of associated coordi-
nates of physical qubits, that are marked for measurement in the X- or Z-basis
and initialisation into |+〉, |A〉 or |Y 〉. The 3D-coordinates correspond to the
geometry presented in Figure 2a. Mapping of defect geometries to the 3D lattice
takes an initial cluster TQCC, where no measurements were marked, and up-
dates it: Z-basis measurements for defect-internal physical qubits, and X-basis
measurements for all others. Injection points (physical qubits initialized into |A〉
or |Y 〉) are measured in the X-basis.

Logical qubits can contain injection points anywhere along the geometric
structure, and the target of validation method is to check that before the injec-
tion point will be measured, the logical qubit is correctly stabilized. Otherwise
the result of the rotated measurement will be faulty, and the whole quantum
computation is compromised. During the validation, as indicated in Section
3, injection points do not need to be explicitly considered. Without affecting
the correctness of the method, these are initialized into the |+〉 state. By re-
interpreting the injection points, the TQCC set is transformed into TQCC+ =
{(x, y, z)|x, y, z ∈ N,measure(x, y, z) ∈ {X,Z, I}, init(x, y, z) ∈ {|+〉}} (Line
2).

Similar to classical circuits where input and output pins are used for the
inputs and the outputs of the circuit, Pin ⊂ TQCC is a set of cluster coordinates
of the physical qubits used for initiliazing the logical qubits. The same applies
for physical qubits used for logical measurement. These are used to read the
information from the TQC circuit; their coordinates are contained in the set
Pout ⊂ TQCC representing the output pins. The physical qubits from both sets
are marked for either X- or Z-basis measurement, in order to respect the defect
geometries from Figure 2b (Line 3). Cluster injection points are elements of Pout.
Circuit simulation will be performed for each for each logical stabilizer specified
in ST , and the Pin and Pout sets will be constructed accordingly.
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A mapped cluster is supporting a logical stabilizer if the correlation surface
that connects the corresponding input and output pins has even parity (Lines 19,
23). In the absence of errors (which is assumed during the validation of circuit
functionality) the topology of the 3D-cluster guarantees that the measurement
parity of all the unit-cell face-qubits is even [4]. The existence of the logical
stabilizer support is proven by computing the parity of a correlation surface,
as even parity indicates that the stabilizer can be correctly constructed using
physical-cluster qubits.

In order to check the existence of all the logical stabilizers specified in ST ,
the validation method checks each entry in the table sequentially (Lines 4 – 23).
Depending on the logical stabilizer to be checked, the injection point coordinate
will be marked in TQCC+ (Line 7) with either an X-basis measurement (if the
logical qubit should be stabilized by logical-X) or with a Z-measurement (if the
logical qubit should be stabilized by logical-Z).

Checking the support of a logical stabilizer is performed by simulations of
the cluster, and the simulation involves the following steps. The first step is to
compute the presumed correlation surface of the investigated stabilizer (Line
8). A correlation surface connects, only for the logical qubits referenced by the
stabilizer, the input to the output pins. In the second step all the physical qubits
are measured according to their markings from TQCC+. In a third step, the
existence of the stabilizer is determined based on the parity of the correlation
surface (Lines 10 – 18). The error-correction is neglected, as it does not manifest
itself in the validation of the specification QC = {ST, J,M}.

During the second step, the measurements are performed. This can be done in
an arbitrary order, but we adopt a layered approach. One of the three dimensions
of the cluster is defined to be the temporal axis. In a cluster of size m × n × t,
we can reduce memory requirements by instead simulating a physical lattice of
t− 1 m× n× 2 layer pairs of the cluster dynamically.

Each layer pair (Line 13) consists of two cross-sections of the cluster (e.g.
Figure 2a). Layer i contains all physical qubits with t-coordinate equal to i.

In the i-th simulation run (i = 0, . . . , t − 1), layers i and i + 1 are consid-
ered. The first simulation run considers only qubits from layers 1 and 2 with
all connections between these layers. However, X and Z measurements are only
performed on qubits with the t-coordinate 1. In the second simulation run, the
qubits from the second layer, which retain their states from the first simulation
run, are entangled with (hitherto unconsidered) qubits from layer 3 (initialized
to |+〉) according to the unit-cell structure that is used throughout the complete
m × n × t cluster. Only second-layer qubits are measured, which influences the
entangled third-layer qubits. This process is continued until the qubits of the
final layer t are measured.

4 Results

To evaluate the practicality and the scalability of the validation procedure the
quantum circuit simulator CHP [10] was integrated for the cluster simulation
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Algorithm 1 Cross-level Validation

Require: Circuit TQC as a geometrical description and the specification QCS
1: Compute TQCC starting from the geometry of TQC
2: Compute TQCC+ from TQCC by marking injection points as |+〉 initialized
3: Compute P q

in, P
q
out ⊂ TQCC+

4: for all stabilizer s from ST of QCS do
5: SIMTQC ← TQCC+

6: for all Logical qubit q stabilized by s do
7: Mark in SIMTQC at coord ∈ P q

in, P
q
out the geometric patterns for initialisa-

tion and measurement of q according to s
8: Compute for sthe correlation surface CORS
9: end for

10: parity ← 1
11: Construct layer l0 of SIMTQC
12: for all Layer li of SIMTQC, i > 0 do
13: Construct li and Entangle with li−1

14: for all Cluster qubits cq in li−1, cq ∈ CORS do
15: ev ← measure cq in X-basis
16: parity = parity · ev
17: end for
18: end for
19: if parity = −1 then
20: return TQC is NOT valid according to QCS
21: end if
22: end for
23: return TQC is valid according to QCS

step. Checking the complete stabilizer truth table ST requires between 1 and
|ST | simulations.

We considered TQC circuits consisting of logical CNOT gates acting on log-
ical qubits. Their sizes are expressed as an equivalent volume [7], a quantity that
measures the volume of a topological structure compared to a set of independent
regularly stacked logical CNOT gates. Our results indicate that reduced TQC
circuits of those equivalent volumes are feasible to simulate, and thus to validate.
Average simulation times for one pair of layers in such circuits are reported in
Figure 4. For example, the number of physical qubits required to be simulta-
neously simulated for the circuit having the equivalent volume of three CNOT
gates was 1462, and this number was 84, 052 for the equivalent volume of 243
CNOT gates. These results suggest that even large and complex topological
quantum circuits can be validated in reasonable time.

The selection of one of the three axes in the cluster as the temporal axis
is arbitrary, which provides an additional degree of freedom for validation. The
complete computation is confined to a 3D volume where the three edges may
have different lengths. Selecting a short edge as the temporal axis will result in
relatively small number of relatively large simulation instances, while selecting
a long edge will require more simulations with less qubits per simulation. Note
that the simulated functionality is identical for both options. Figure 4 compares
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Fig. 3. The logical CNOT: a) Two pairs of defects of opposite type are braided. The
stabilizer table consists of two stabilizers and indicates, for example, that if the control-
qubit is stabilized by X, after applying the CNOT the target-qubit will also be sta-
bilized by X. b) Validation of a circuit consisting of 3 logical CNOTs: 1. the geo-
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verification of one of the stabilizers from the specification.
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the run times for these possibilities. It can be seen that simulation is orders of
magnitude faster when the longest edge is selected. This is not surprising as the
measurement of stabilizers is of quadratic complexity in the number of qubits,
and therefore having to consider less qubits per simulation instance outweighs
the higher number of simulation runs.

5 Conclusion

The first validation method for topological quantum circuits was presented. Syn-
thesis of topological quantum circuits often results in non-obvious inaccuracies
that currently require a huge manual effort to find and correct, which is clearly
impractical even for small circuits. The presented validation procedure maps the
geometric description to the actual three-dimensional cluster of physical qubits
and simulates these qubits. This abstraction level is much closer to the actual
hardware implementation and is well suited to identify any deviations from the
specification. Empirical data show the scalability of the procedure to circuits of
practical size. As the next step, we plan to develop a validation-guided synthesis
procedure for topological quantum circuits, and a more efficient representation
of the circuit specification.
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