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Abstract. We present a clausal resolution-based method for normal multimodal
logics of confluence, whose Kripke semantics are based on frames characterised
by appropriate instances of the Church-Rosser property. Here we restrict attention
to eight families of such logics. We show how the inference rules related to the
normal logics of confluence can be systematically obtained from the parametrised
axioms that characterise such systems. We discuss soundness, completeness, and
termination of the method. In particular, completeness can be modularly proved
by showing that the conclusions of each newly added inference rule ensures that
the corresponding conditions on frames hold. Some examples are given in order
to illustrate the use of the method.
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1 Introduction

Modal logics are often introduced as extensions of classical logic with two additional
unary operators: “[J” and “<>”, whose meanings vary with the field of application to
which they are tailored to apply. In the most common interpretation, formulae “Up”
and “{>p” are read as “p is necessary” and “p is possible”, respectively. Evaluation of
a modal formula depends upon an organised collection of scenarios known as possible
worlds. Different modal logics assume different accessibility relations between such
worlds. Worlds and their accessibility relations define a so-called Kripke frame. The
evaluation of a formula hinges on such structure: given an appropriate accessibility
relation and a world w, a formula Op is satisfied at w if p is true at all worlds accessible
from w; a formula {>p is satisfied at w if p is true at some world accessible from w.

In normal modal logics extending the classical propositional logic, the schema
O(p = 9) = (He = Oy) (the distribution axiom K), where ¢ and ¢ are well-
formed formulae and = stands for classical implication, is valid, and the schematic
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rule ¢/ O (the necessitation rule Nec) preserves validity. The weakest of these logics,
named K(l), is semantically characterised by the class of Kripke frames with no re-
strictions imposed on the accessibility relation. In the multimodal version, named K(n),
Kripke frames are directed multigraphs and modal operators are equipped with indexes
over a set of agents, given by A, = {1,2,...,n}, for some positive integer n. Ac-
cordingly, in this case classical logic is extended with operators [, &, . .. [z, where
a formula as [edp, with a € A,, may be read as “agent a considers p to be nec-
essary”. The modal operator < is the dual of [a, being introduced as an abbrevi-
ation for —[e—, where — stands for classical negation. The logic K(n) can be seen
as the fusion of n copies of Ky and its axiomatisation is given by the union of
the axioms for classical propositional logic with the axiomatic schemata K,, namely
ld(p = 1) = (ldp = [ay), for each a € A,; and the set of inference rules is given
by modus ponens and the rule schemata Nec,, namely o/ [alp, for each a € A,,.

The basic normal multimodal logic K,y and its extensions have been widely used to
represent and reason about complex systems. Some of the interesting extensions include
the normal multimodal logics based on K, and (the combination of) axioms as, for in-
stance, T ([ = ¢), D,y (o = ©p). 4, (B = WEy), 5, (Gp = HOy),
and B, (¢ [y = o). For example, the description logic ALC, which is employed
for reasoning about ontologies, is a syntactic variant of K ;) [22]; the epistemic logic,
denoted by SS(n), which is used in dealing with problems ranging from multi-agency
to communication protocols [21111], can be axiomatised by combining K,, T,, and §,.
The addition of those axioms (or their combinations) to K(n) imposes some restrictions
on the class of models where formulae are valid. Thus, a formula valid in a logic con-
taining T, is valid only if it is valid in a frame where the accessibility relation for each
agent a is reflexive. The other axioms, D, 4., 5., and B, demand the accessibility re-
lation for each agent a to be, respectively, serial, transitive, Euclidean, and symmetric.

A logic of confluence KI();l(I)’7”s is a modal system axiomatised by K(n) plus axioms
GP4"% of the form

QT = @O

where a € A, ¢ is a well-formed formula, p,q,r,s € N, where Oap & @ and
@itly = [@ @iy, and where %0 = p and Tl = & Gip, fori € N (the su-
perscript is often omitted if equal to 1). Such axiomatic schemata were notably studied
by Lemmon [16]. Using Modal Correspondence Theory, it can be shown that the frame
condition on a logic where an instance of GZ?™* is valid corresponds to a generalised
diamond-like structure representing the Church-Rosser property (the philosophical lit-
erature sometimes calls such property ‘incestual’ [8]), as illustrated in Fig. [T] [6]. To be
more precise, let V¥V be a nonempty set of worlds and let R, € W x W be the acces-
sibility relation of agent @ € A,. By wR%w’ we mean that w = w’, and wR. 1w’
means that there is some world w” such that wR,w” and w”R%w’. Thus, wR:w’
holds if there is an i-long R,-path from w to w’; alternatively, to assert that, we may
also write (w,w’) € R:. Given these definitions, the condition on frames that corre-
sponds to the axiom G275 is described by Vwg, wy,ws (woREwy A woyRLwe =
Jws (w1 RIws A weR3ws)), where wyg, wy, wa, wg € W.



Clausal Resolution for Modal Logics of Confluence® 3

Fig. 1. Church-Rosser property for frames where G24"*° = @p la%p = [o" @Scp is valid.

Many well-known modal axiomatic systems are identified with particular logics of
confluence. For instance, T(n) corresponds to K?,’Ll)’ ", a normal modal logic in which
the axiom el = ¢ is valid, for all ¢ € A,, and any formula . The axiom 4, may be
written as G019 that is, [d1¢ = [%¢. The Geach axiom G1, is given by G1:1:1:1
(© o = [@<p). Formulae in Ké;bl)’l’l are satisfiable if, and only if, they are satisfi-
able in a model with n relations satisfying the so-called ‘diamond property’, and analo-
gous claims hold for instance concerning formulae of T, and models whose relations
are all reflexive, and formulae of 4,y and models whose relations are all transitive.

Logics of confluence are interesting not only because they encompass a great num-
ber of normal modal logics as particular examples, but also in view of their attractive
computational behaviour. Indeed, if we think of multimodal frames as abstract rewriting
systems, for instance, and think of modal languages as a way of obtaining an internal
and local perspective on such frames, then each given notion of confluence ensures that
certain different paths of transformation will eventually lead to the same result. Having
a decidable proof procedure for a logic underlying such class of frames helps in estab-
lishing a direct form of verifying the properties of the structures that they represent.

As a contribution towards a uniform approach to the development of proof methods
for logics of confluence, in this work we deal with the logics where p, ¢, 7, s € {0,1}.
Table[T|shows the relevant axiomatic schemata, some standard names by which they are
known, and the corresponding conditions on frames. The axiom G111 seems not to
be named in the literature; the corresponding property follows the naming convention
given in [5, pg. 127]. Note that Gg’o’o’o, Gg’l’l’o, and G}I’O’O’l are instances of classical
tautologies and are thus not included in Table[I] Also, given the duality between [al and
@, GP-47% is semantically equivalent to GJ*P*¢. Thus, there are in fact eight families
of multimodal logics related to the axioms G22"* where p, q,7,s € {0,1}.

We present a clausal resolution-based method for solving the satisfiability problem
in logics axiomatised by K, plus G225 where p, ¢, 7, s € {0, 1}. The resolution cal-
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(p,q.1,s) | Name Axioms Property Condition on Frames
(0,0,1,1)| B, o= @&y symmetric  |Vw, w' (wR,w' = w'Row)
(1,1,0,0) QEp=p
(0,0,1,0)| Ban, o= lp modally banal  |Vw, w' (wWRew' = w = w')
(1,0,0,0) Qo=
(0,1,0,1)| D, W= e serial VwIw' (wRaw')
(1,0,1,0)| F, Gp= Mo functional Vw, w', w” (WRew' AwRw") = w' = w")
(0,0,0,1) a 0= Q¢ reflexive Vw(wRqw)
(0,1,0,0) Bo = o
(1,0,1,1)| 5, Gp= @@y Euclidean Vw, w', w” (wWRew' A wRew') = w'Raw")
(1,1,1,0) @Ep= Ey
(1,1,1,1)| Gl, |®@p= Wp| convergent gz;/?();,/w?g(fuzf)/?l/(\zz’/,RAwW%Raw”) =
0,1,1,1)|G& 11 ¢ = @@ |0,1,1,1-convergent|Vw, w' (wRaw' = Juw" (wRaw” A w' Raw))
(1,1,0,1) QEp= Qo

Table 1. Axioms and corresponding conditions on frames.

culus is based on that of [[17], which deals with the logical fragment corresponding to
K(n)- The new inference rules to deal with axioms of the form G5%"™* add relevant
information to the set of clauses: the conclusion of each inference rule ensures that
properties related to the corresponding conditions on frames hold, that is, the newly
added clauses capture the required properties of a model. We discuss soundness, com-
pleteness, and termination. Full proofs can be found in [18]].

2 The Normal Modal Logic K,,,

The set WFFK(n) of well-formed formulae of the logic K,,) is constructed from a denu-

merable set of propositional symbols, P = {p,q,p’,q',p1,q1, ...}, the negation sym-
bol —, the conjunction symbol A, the propositional constant true, and a unary connec-
tive [a for each agent a in the finite set of agents A, = {1,...,n}. Whenn = 1,
we often omit the index, that is, O stands for @e. As usual, @ is introduced as an
abbreviation for —[al—. A literal is either a propositional symbol or its negation; the set
of literals is denoted by L. By —l we will denote the complement of the literal | € L,
that is, =/ denotes —p if [ is the propositional symbol p, and —[ denotes p if [ is the
literal —p. A modal literal is either (] or =[], where [ € Land a € A,,.

We present the semantics of K(n), as usual, in terms of Kripke frames.

Definition 1. A Kripke frame S for n agents over P is given by a tuple

(W7w07R17R27~-~

,Rn), where W is a set of possible worlds (or states) with a
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distinguished world wy, and each R, is a binary relation on V. A Kripke model
M = (8, 7) equips a Kripke frame S with a function m : W — (P — {true, false})
that plays the role of an interpretation that associates to each state w € W a truth-
assignment to propositional symbols.

The so-called accessibility relation R, is a binary relation that captures the notion of
relative possibility from the viewpoint of agent a: A pair (w,w’) is in R, if agent a
considers world w’ possible, given the information available to her in world w. We
write (M, w) = @ (resp. (M, w) F~ ¢) to say that ¢ is satisfied (resp. not satisfied) at
the world w in the Kripke model M.

Definition 2. Satisfaction of a formula at a given world w of a model M is set by:

(M, w) = true
(M, w) = pif, and only if, 7(w)(p) = true, where p € P
- <M7w> ): — if, and only if, <Maw> l# P
(M, w)
(M, w)

= (o A0) if, and only if, (M, w) = @ and (M, w) |=
E L if, and only if (M, w') |= @, for all W' such that wR,w'

The formulae false, (i V 1), (¢ = 1), and <> are introduced as the usual abbrevia-
tions for —true, —(—p A =), (—¢ V ¥), and — [, respectively. Formulae are inter-
preted with respect to the distinguished world wy, that is, satisfiability is defined with
respect to pointed-models. A formula ¢ is said to be satisfied in the model M = (S, )
of the Kripke frame S = W, wo, R1, ..., Ry) if (M, wp) = ¢; the formula ¢ is sat-
isfiable in a Kripke frame S if there is a model M of S such that (M, wy) &= ¢; and
@ is said to be valid in a class C of Kripke frames if it is satisfied in any model of any
Kripke frame belonging to the class C.

3 Resolution for K,

In [17]], a sound, complete, and terminating resolution-based method for K(n) , which in
this paper we call RESy, is introduced. As the proof-method for logics of confluence
presented here relies on RESy, in order to keep the present paper self-contained, we re-
produce the corresponding inference rules here and refer the reader to [[17] for a detailed
account of the method. The approach taken in the resolution-based method for K(n) is
clausal: a formula to be tested for (un)satisfiability is first translated into a normal form,
explained in Section [3.1] and then the inference rules given in Section [3.2] are applied
until either a contradiction is found or no new clauses can be generated.

3.1 A Normal Form for K,

Formulae in the language of K,y can be transformed into a normal form called Sepa-
rated Normal Form for Normal Logics (SNF). As the semantics is given with respect to
a pointed-model, we add a nullary connective start in order to represent the world from
which we start reasoning. Formally, given a model M = (W, wg, R1,...,Rpn,T), we
have that (M, w) = start if, and only if, w = wy. A formula in SNF is represented by
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a conjunction of clauses, which are true at all reachable states, that is, they have the gen-
eral form A i [0* A;, where A; is a clause and [1*, the universal operator, is characterised
by (the greatest fixed point of) "¢ < o A A o A, [ d*, for a formula . Observe
that satisfaction of [J*¢ imposes that ¢ must hold at the actual world w and at every
world reachable from w, where reachability is defined in the usual (graph-theoretic)
way. Clauses have one of the following forms:

,
— Initial clause start = \/ Iy
b=1
T
— Literal clause true = \/ Iy
b=1
— Positive a-clause ' = @i
— Negative a-clause I = @]

where [, I’, I, € L. Positive and negative a-clauses are together known as modal a-
clauses; the index a may be omitted if it is clear from the context.

The translation to SNF uses rewriting of classical operators and the renaming tech-
nique [20]], where complex subformulae are replaced by new propositional symbols and
the truth of these new symbols is linked to the formulae that they replaced in all states.
Given a formula ¢, the translation procedure is applied to (0* (start = to) A O*(tp =
©), where tg is a new propositional symbol. The universal operator, which surrounds
all clauses, ensures that the clauses generated by the translation of a formula are true
at all reachable worlds. Classical rewriting is used to remove some classical operators
from ¢ (e.g. O*(t = 1 A 1pa) is rewritten as * (¢ = 1) A O*(t = t2)). Renam-
ing is used to replace complex subformulae in disjunctions (e.g. if ¥ is not a literal,
O*(t = 1 V 1)) is rewritten as O*(t = 1 V t1) A O*(t1 = 13), where ¢; is a
new propositional symbol) or in the scope of modal operators (e.g. if ¢ is not a literal,
O*(t = [ae) is rewritten as O* (¢ = [al¢1) A O*(¢; = 1), where ¢; is a new propo-
sitional symbol). We refer the reader to [[17] for details on the transformation rules that
define the translation to SNF, their correctness, and examples of their application.

3.2 Inference Rules for K ,,,

In the following, I, ', I;, I} € £ (i € N)and D, D’ are disjunctions of literals.

Literal Resolution. This is classical resolution applied to the classical propositional
fragment of the combined logic. An initial clause may be resolved with either a lit-
eral clause or another initial clause (rules IRES1 and IRES2). Literal clauses may be
resolved together (LRES).

[IRES1] (" (true = D V1) [IRES2]*(start = D V) [LRES]*(true = DV [)
O*(start = D' V —l) O*(start = D' Vv —l) O*(true = D' vV —l)

O*(start = D v D) O*(start = D v D') O*(true = D v D)
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Modal Resolution. These rules are applied between clauses which refer to the same
context, that is, they must refer to the same agent. For instance, we may resolve two
or more [s]-clauses (rules MRES and NEC2); or several [a]-clauses and a literal clause
(rules NEC1 and NEC3). The modal inference rules are:

[MRES] [O0*(l; = @) INEC2] O°(l) = @iy)
O (lo = — i) O*(ly = E=ly)
O (true = —ly V —l3) O*(I5 = — (aly)
O* (true =~} V =5 V =l3)
INEC1] 0O*(} = la=ly) INEC3] 0O*(1 = la=ly)
O (I, = =lp) O (I, = =ly)
O (' = — ) O (' = - i)
O (true=10; V... Vi VI) O (true=1; V... Vip)
O*(true = —ly V...V =, vV =l) O*(true = —l1 V...V =, vV =l)

The rule MRES is a syntactic variation of classical resolution, as a formula and its
negation cannot be true at the same state. The rule NEC1 corresponds to necessitation
(applied to (—ly A ... A —l,, = —l), which is equivalent to the literal clause in the
premises) and several applications of classical resolution. The rule NEC2 is a special
case of NEC1, as the parent clauses can be resolved with the tautology true = [; V
=ly V ly. The rule NEC3 is similar to NEC1, however the negative modal clause is
not resolved with the literal clause in the premises. Instead, the negative modal clause
requires that resolution takes place between literals on the right-hand side of positive
modal clauses and the literal clause. The resolvents in the inference rules NEC1-NEC3
impose that the literals on the left-hand side of the modal clauses in the premises are
not all satisfied whenever their conjunction leads to a contradiction in a successor state.
Given the syntactic forms of clauses, the three rules are needed for completeness [[17].
Note that for NEC1, we may have m = 0; for NEC2 the number of premises is fixed;
and that for NEC3, if m = 0, then the literal clause in the premises is true = false,
which cannot be satisfied in any model. Thus, NEC3 is not applied when m = 0.

We define a derivation as a sequence of sets of clauses 7, 71, ..., where T; results
from adding to 7;_; the resolvent obtained by an application of an inference rule of
RES to clauses in 7;_1. A derivation terminates if, and only if, either a contradiction,
in the form of (J*(start = false) or (J*(true = false), is derived or no new clauses
can be derived by further application of the resolution rules of RESk. We assume stan-
dard simplification from classical logic to keep the clauses as simple as possible. For
example, D V [V [ on the right-hand side of a clause would be rewritten as D V [.

Example 1. We wish to check whether the formula (aND) = [O(Bla A Bb)is
valid in K(,. The translation of its negation into the normal form is given by clauses
(1)-(9) below. Then the inference rules are applied until false is generated. In order to
improve readability, the universal operator is suppressed. The full refutation follows.
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1. start = ¢, 9. te = —[2b

2. t1 = Ot 10. true = —t2 V —t5 [NEC1, 3,8, 4]
3 ty = [t 11. true = —ty V —ts V g [LRES, 10, 7]
4. true = —t3Va 12. true = —it2 V —tg [NEC1, 3,9, 5]
5. true = —t3 Vb 13. true = -ty V ity [LRES, 12, 11]
6. t1 =0ty 14. true = —t; [NEC1,2,6,13]
7. true = -ty Vis Vits 15. start = false [IRES1, 14, 1]
8. ts=> —-Ba

Clauses (10) and (12) are obtained by applications of NEC1 to clauses in the context of
agent 2. Clause (14) is obtained by an application of the same rule, but in the context of
agent 1. Clauses (11) and (13) result from applications of resolution to the propositional
part of the language shared by both agents. Clause (15) shows that a contradiction was
found at the initial state. Therefore, the original formula is valid.

4 Clausal Resolution for Logics of Confluence

The inference rules of RESy, given in Section are resolution-based: whenever a
set of (sub)formulae is identified as contradictory, the resolvents require that they are
not all satisfied together. The extra inference rules for Kﬁ’lq)’r’s, with p, ¢,7,s € {0,1},
which we are about to present, have a different flavour: whenever we can identify that
the set of clauses imply that <»? [<19¢) holds, we add some new clauses that ensure that
HT<“>81/) also holds. If this is not the case, that is, if the set of clauses implies that
— [ ¢*1) holds, then a contradiction is found by applying the inference rules for K-
Because of the particular normal form we use here, there are, in fact, two general forms
for the inference rules for K’()T’Lq)’r’s, given in Table [2] (where 1,1’ are literals and C is a
conjunction of literals).

[RESZ'™°]  O*(l = @l') [RESZO™<] O*(C' = & P')
O (9Pl = @ 1) 0 (C = @)

Table 2. Inference Rules for GE4"¢

Soundness is checked by showing that the transformation of a formula ¢ €
WFFK(M into its normal form is satisfiability-preserving and that the application of
the inference rules are also satisfiability-preserving. Satisfiability-preserving results for
the transformation into SNF are provided in [17]. To extend the soundness results so
as to cover the new inference rules, note that the conclusions of the inference rules
in Table [2] are derived using the semantics of the universal operator and the distribu-
tion axiom, K,. For RESE:1"%  we have that the premise (J*(I = [=I') is semanti-
cally equivalent to [0*(— [l = —I). By the definition of the universal operator, we
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obtain O* ([P (= [al]” = —I)). Applying the distribution axiom K, to this clause re-
sults in O0*([al?— (]’ = [P=])), which is semantically equivalent to (0*(— [P =] =
—[P=[)]"). As < is an abbreviation for — [zl — and because ? [d!’ implies [&” &=’
in KI();:)’T’S, by classical reasoning, we have that O* (= [P—] = —[a?P=[J]’) implies
O*(@Pl = [A7*1"), the conclusion of RES?>1">*, Soundness of the inference rule
RES?:%:™% can be proved in a similar way.

As the conclusions of the above inference rules may contain complex formulae,
they might need to be rewritten into the normal form. Thus, we also need to add clauses
corresponding to the normal form of &Pl and €*1’, which occur in the conclusions of
the inference rules. Let ¢ be a formula and let 7(y) be the set of clauses resulting from
the translation of ¢ into the normal form. Let £(7(¢)) be the set of literals that might
occur in the clause set, that is, for all p € P such that p occurs in 7(¢), we have that
both p and —p are in L£(7(p)). The set of definition clauses is given by

O*(posa, = —lad=l)
O*(—posa, = [d-i)

foralll € L(7(yp)), where pos,,; is a new propositional definition symbol used for re-
naming the negative modal literal @l, that is, the definition clauses correspond to the
normal form of pos,; < —l<d—l. Note that we have definition clauses for every propo-
sitional symbol and its negation, e.g. for a propositional symbol p € 7(¢), we have
the definition clauses O0*(pos,,p, = —lad—p), O*(—pose, = [a—p), O*(posqe,—p =
—lap), and O*(—pose,~p = [p), for every a € A, occurring in 7(y). We assume
the set of definition clauses to be available whenever those symbols are used. It is also
important to note that those new definition symbols and the respective definition clauses
can all be introduced at the beginning of the application of the resolution method be-
cause we do not need definition clauses applied to definition symbols in the proofs, as
given in the completeness proof [18]. As no new propositional symbols are introduced
by the inference rules, there is a finite number of clauses that might be expressed (mod-
ulo simplification) and, therefore, the clausal resolution method for each modal logic of
confluence is terminating.

As discussed above and from the results in [17]], we can establish the soundness of
the proof method.

Theorem 1. The resolution-based calculi for logics of confluence are sound.

Proof (Sketch). The transformation into the normal form is satisfiability preserving
[17]]. Given a set T of clauses and a model M that satisfies 7, we can construct a model
M’ for the union of 7 and the definition clauses, where M and M’ may differ only
in the valuation of the definition symbols. By setting properly the valuations in M’, we
have that (M’, w) |= pos,, if and only if (M, w) = ©p, for any w € W. Sound-
ness of the inference rules for RESy is also given in [17]]. Soundness of RES?:1"¢ and
RES2-%™ follow from the axiomatisation of Kz();f)’r’s.

Table E] shows the inference rules for each specific instance of GZ:%™%, where
p,q,7,s € {0,1}, 1, 1" € L, and D is a disjunction of literals. As G2-%™* is se-
mantically equivalent to G/ *P9, the inference rules for both systems are grouped to-
gether. Some of the inference rules in Table |3| are obtained directly from Table |2} For
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Logic|Inference Rules Logic |Inference Rules
T, [RES)*%'] O (true = D V [) GO [RES)MH1 O (1 = @)
O (=D = —[ad-) 0" (1 = @posy,)
[RES) MO0 O (1 = @) [RES; 1] O*(l = W)
O* (true = —l V1) O*(posa, = — @ =l")
Ban, [RES. 1] O (true = D V [) F, [RES}OH01 0% (1 = - @)
O* (=D = [@)) O*(l = @)
[RESLOO01 O (1 = —&-1) 5. [RES.OH1 O (1 = -~ Rl
O* (true = -l V1) O (1 = ladpos,,r)
B, [RESS 1] O*(true = D V1) [RES. 0] O (1 = @)
0" (=D = [aposa,) O (posq, = @)
[RES. V001 O = @) G, [RES. 1] O (1 = @)
O (=l = @) 0" (posa,1 = Eposg,r)
D, [RESOHCH O (1 = @)
0%l = —~&-l)

Table 3. Inference Rules for several instances of GE'¢"¢

instance, the rule for reflexive systems, i.e. where the axiom G190 is valid, has the
form 0% (1 = ©I')/0*(©°% = [E°¢°) in Table 2} in Table 3| the conclusion is
rewritten in its normal form, that is, (J*(true = —[ Vv !’). For other systems, the form of
the inference rules are slightly different from what would be obtained from a direct ap-
plication of the general inference rules in Table@ This is the case, for instance, for the
inference rules for symmetric systems, that is, those systems where the axiom G:1:0:0
is valid. From Table in symmetric systems, for a premise of the form 0* (I = [ll’),
the conclusion is given by (1" (1 = I’), which is translated into the normal form as
O*(true = —pos,,; V 1'). We have chosen, however, to translate the conclusion as
O*(—l" = [a=1), which is semantically equivalent to the conclusion obtained by the
general inference rule, but avoids the use of definition symbols.

The inference rules given in Table 2] provide a systematic way of designing the
inference rules for each specific modal logic of confluence. We note, however, that we
do not always need both inference rules in order to achieve a complete proof method for
a particular logic. In the completeness proofs provided in [[18]], we show for instance that
the inference rules which introduce modalities in their conclusions from literal clauses
(that is, the inference rules RESg*OV“S) are not needed for completeness. We also show
that we need just one specific inference rule for logics in which G%! and 5, are
valid: RESO-111 and RESL 011, respectively.

Given a formula ¢ in K?,’,,q)’r’s, with p,q,r,s € {0,1}, the resolution method

for K(,,), given in Section [3| and the inference rule RES}?"* are applied to 7(y)
and the set of definition clauses. The extra inference rules for Kﬁq)’r’s do not need
to be applied to clauses if such application generates new nested definition symbols,
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that is, we do not need definition clauses for definition symbols. For instance, the ap-
plication of RES}11:! to a clause of the form (0*(I = [&pos, ) would result in
D*(posml = [d POSa,pos, ). Although it is not incorrect to apply the inference rules
to such a clause, this might cause the method not to terminate. We can show, however,
that the application of inference rules to clauses which would result in nested literals is
not needed for completeness, as the restrictions imposed by those symbols are already
ensured by existing definition symbols and relevant inference rules (see Theorem 3| be-
low). This ensures that no new definition symbols are introduced by the proof method.

Completeness is proved by showing that, for each specific logic of confluence, if a
given set of clauses is unsatisfiable, there is a refutation produced by the method pre-
sented here. The proof is by induction on the number of nodes of a graph, known as
behaviour graph, built from a set of clauses. The graph construction is similar to the
construction of a canonical model, followed by filtrations based on the set of formu-
lae (or clauses), often used to check completeness for proof methods in modal logics
(see [3]], for instance, for definitions and examples). Intuitively, nodes in the graph cor-
respond to states and are defined as maximally consistent sets of literals and modal
literals occurring in the set of clauses, including those literals introduced by definition
clauses. That is, for any literal [ occurring in the set of clauses, including definition
clauses, and agents a € A,,, a node contains either [ or —/; and either [el] or —[a]]. The
set of edges correspond to the agents’ accessibility relations. Edges or nodes that do not
satisfy the set of clauses are deleted from the graph. Such deletions correspond to appli-
cations of one or more of the inference rules. We prove that an empty behaviour graph
corresponds to an unsatisfiable set of clauses and that, in this case, there is a refutation
using the inference rules for RESy, given in Section [3] and the inference rules for the
specific logic of confluence, presented in Table 3]

Theorem 2. Let T be an unsatisfiable set of clauses in GE9™*° with p,q,r,s € {0,1}.

A contradiction can be derived by applying the resolution rules for RESy, presented in
Section 3] and Table

Proof (Sketch). We construct a behaviour graph and show that the application of rules
in Table [3]removes nodes and edges where the corresponding frame condition does not
hold. The full proof is provided in [18].

Theorem 3. The resolution-based calculi for logics of confluence terminate.

Proof (Sketch). From the completeness proof, the introduction of a literal such as
POSa,pos,,, for an agent a and literal [ is not needed. We can show that the restrictions
imposed by such clauses, together with the resolution rules for each specific logical
system, are enough to ensure that the corresponding frame condition already holds. As
the proof method does not introduce new literals in the clause set, there is only a finite
number of clauses that can be expressed. Therefore, the proof method is terminating.

Example 2. We show that ¢ £ p = @<p, which is an instance of By, is a valid for-
mula in symmetric systems. As symmetry is implied by reflexivity and Euclideanness,
instead of using RES%’LO’U, we combine the inference rules for both T; and 5;. Clauses
(1)—(4) correspond to the translation of the negation of ¢ into the normal form. Clauses
(5)—(8) are the definition clauses used in the proof.
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1 start = ¢ 9. true = —to V posi ¢, IMRES, 5, 3]
2 true = —to V p 10. true = —t1 V —posi p [MRES, 7, 4]
3 to = - M=ty 11. pos1,p = @posi,p [RES] " 7]
4 t1 = M—p 12.  true = —posip V —posi,, [NEC1,11,6,10]
5. —posi, = [M—t; [Def.posi,] 13. true = —pV posip [RES00 8]
6. posi, = — =ty [Def.posi,] 14. true = —pV —posi,i, [LRES, 13,12]
7. posip = —[-p [Def.posi,] 15. true = —toV —p [LRES, 14, 9]
8. —posip = M-p [Def.posi,] 16. true = —ito [LRES, 15, 2]
17. start = false [IRES1, 16, 1]

Clause (11) results from applying the Euclidean inference rule to clause (7). Clause
(13) results from applying the reflexive inference rule to (8). The remaining clauses are
derived by the resolution calculus for K. As a contradiction is found, given by clause
(17), the set of clauses is unsatisfiable and the original formula ¢ is valid.

5 Closing Remarks

We have presented a sound, complete, and terminating proof method for logics of con-
fluence, that is, normal multimodal systems where axioms of the form

Gpars = Gray = @ Gt

where p, ¢, 7, s € {0,1}, are valid. The axioms G2%"* provide a general form for ax-
ioms widely used in logical formalisms applied to representation and reasoning within
Computer Science.

We have proved completeness of the proof method presented in this paper for eight
families of logics and their fusions. The inference rules for particular instances of these
logics can be systematically obtained and the resulting calculus can be implemented by
adding to the existing prover for K(n) [24]] the clauses dependent on the clause-set. Ef-
ficiency, of course, depends on several aspects. Firstly, for certain classes of problems,
dedicated proof methods might be more efficient. For instance, if the satisfiability prob-
lem for a particular logic is in NP (as in the case of S5(y)), then our procedure may be
less efficient as the satisfiability problem for Ky is already PSPACE-complete [15].
Secondly, efficiency might depend on the inference rules chosen to produce proofs for a
specific logic. For instance, for SS(H), the user can choose the inference rules related to
reflexivity and Euclideanness, or choose the inference rules related to seriality, symme-
try, and Euclideanness. The number of inference rules used to test the unsatisfiability of
a set of clauses for a particular logic might affect the number of clauses generated by the
resolution method as well as the size of the proof. As in the case of derived inference
rules in other proof methods, using more inference rules might lead to shorter proofs.
Thirdly, as in the case of the resolution-based method for propositional logic, efficiency
might be affected by strategies used to search for a proof. Future work includes the
design of strategies for RESk(n) and for specific logics of confluence. Fourthly, effi-
ciency might also depend on the form of the input problem. For instance, comparisons
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between tableaux methods and resolution methods [[14.13]] have shown that there is no
overall better approach: for some problems resolution proof methods behave better, for
others tableaux based methods behave better. Providing a resolution-based method for
the logics axiomatised by K, and GZ-?™° gives the user a choice for automated tools
that can be used depending on the type of the input formulae.

There are quite a few dedicated methods for the logics presented in this paper. In
general, however, those methods do not provide a systematic way of dealing with log-
ics based on similar axioms or their extensions. Therefore, we restrict attention here
to methods related to logics of confluence. Tableaux methods for logics of confluence
where the mono-modal axioms T, D, B, 4, 5, De (for density, the converse of 4), and
G are valid, can be found in [[7.9]. For each of those axioms, a tableau inference rule
is given. The inference rules can then be combined in order to provide proof methods
for modal logics under 85(1). Whilst the tableaux procedures in [[7l9] are designed for
mono-modal logics they seem to be extandable to multimodal logics as long as there
are no interactions between modalities. Those procedures do not cover all the logics
investigated in this paper. In [2]], labelled tableaux are given for the mono-modal logics
axiomatised by K and axioms GP'?¢"* where ¢ = s = 0 implies p = r = 0. This
restriction avoids the introduction of inference rules related to the identity predicate,
but also excludes, for instance, functional and modally banal systems, which are treated
by the method introduced in the present paper. In [4], hybrid logic tableaux methods
for logics of confluence are given: the inference rules create nodes, labelled by nom-
inals. The nominals are used in order to eliminate the Skolem function related to the
existential quantifier in the first-order sentence corresponding to the axiom G243,
This proof method provides tableau rules for all instances of the axiom. Soundness and
completeness are discussed, but termination of the method is not dealt with and it is not
clear what are the bounds for creating new nodes in the general case. In [12], sound,
complete, and terminating display calculi for tense logics and some of its extensions,
including those with the axiom GZ'%"*, are presented. It has been shown that these
calculi have the property of separation, that is, they provide complete proof methods
for the component fragments. The paper investigates the relation between the display
calculi and deep inference systems (where the sequent rules can be applied at any node
of a proof tree). By finding appropriate propagation rules for the fusion of tense logic
with either S4 ), S5;, or functional systems, completeness of search strategies are
presented. However, propagation rules for the axiom of convergence, G1, or for the
combination of path axioms (i.e. axioms of the form {}'¢ = {}J¢) with seriality are
not given. Also related, in [1]], prefixed tableaux procedures for confluence logics that
validate the multimodal version of the axiom < B¢ = [ @y, where ¢ is a formula,
are given. Note that the logics in [1]] are systems with instances of the axiom Giéii,
that is, a logic which allows the interaction of the agents a, b, ¢, d € A,,, and mighf lead
to undecidable systems.

To the best of our knowledge, there are no resolution-based proof methods for logics
of confluence. However, resolution-based methods for modal logics, based on transla-
tion into first-order logic, have been proposed for several modal logics. A survey on
translation-based approaches for non-transitive modal logics (i.e. modal logics that do
not include the axiom 4) can be found in [19]. The translation-based approach has the
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clear advantage of being easily implemented, making use of well-established theorem-
provers, and dealing with any logic that can be embedded into first-order, should it be
decidable or not. However, first-order provers cannot deal easily with logics that em-
bed some properties which are covered by particular axioms of confluence (e.g. func-
tionality). In order to avoid such problematic fragments within first-order logic, the
axiomatic translation principle for modal logic, introduced in [23]], besides using the
standard translation of a modal formulae into first-order, takes an axiomatisation for a
particular modal logic and introduces a set of first-order modal axioms in the form of
schema clauses. As an example, adapted from [23]], in order to prove that [el—[ep is
satisfiable in KT4,,), for each modal subformula (i.e. [J=lelp and [eIp) and for each
considered axiom (i.e. T and 4), one schema clause is added, resulting in:

“QR@.@,®)V-R@yYVRm_ m,v) CQu. @, ®)Ve. @,
“Qu@, @)V -R@,y)VQ@,y) “Q@,(®) vV Q(y)

where the predicate (), (z) can be read as ¢ holds at world = and R is the predicate
symbol to express the accessibility relation for agent a. Note that the clauses on the left
are related to transitivity (4) and the two clauses on the right are related to reflexivity
(T). The axiomatic translation approach is similar to the approach taken in the present
paper and in [[17] as the schema clauses provide a way of talking about properties of the
accessibility relation. As in our case, soundness follows easily from the properties of
the translation. Termination follows from the fact that only a finite number of schema
clauses are needed. However, as in the case of the proof method presented here, general
completeness of the method is difficult to be proved and it is given only for particular
families of logics. In [10], a translation-based approach for properties which can be
expressed by regular grammar logics (including transitivity and Euclideaness) is given.
Completeness of the method has been proved for some families of logics.

In the present paper, we have restricted attention to the case where p, ¢, 7, s € {0, 1},
but we believe that the proof method can be extended in a uniform way for dealing with
the unsatisfiability problem for any values of p, g, r, and s, by adding inference rules of
the following form:

[RESEC™5] O (I = &P @)

O (1= @"&°l)
which requires search for clauses that correspond to the normal form of the premise and
the introduction of as many new definition symbols as the number of modalities occur-
ring in the conclusion. The inference rule RESE-¢"% is obviously sound, but we have
yet to identify the restrictions on the number of new propositional symbols introduced
by the method in order to ensure termination. Future work includes this extension, the

complexity analysis, the implementation of the proof method, and practical compar-
isons with other methods.
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