Skip to main content

SAT-Based Decision Procedure for Analytic Pure Sequent Calculi

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8562))

Abstract

We identify a wide family of analytic sequent calculi for propositional non-classical logics whose derivability problem can be uniformly reduced to SAT. The proposed reduction is based on interpreting these calculi using non-deterministic semantics. Its time complexity is polynomial, and, in fact, linear for a useful subfamily. We further study an extension of such calculi with Next operators, and show that this extension preserves analyticity and is subject to a similar reduction to SAT. A particular interesting instance of these results is a HORNSAT-based linear-time decision procedure for Gurevich and Neeman’s primal infon logic and several natural extensions of it.

This research was supported by The Israel Science Foundation (grant no. 280-10).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–139 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avron, A.: Classical gentzen-type methods in propositional many-valued logics. In: Fitting, M., Orłowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-Valued Logic. Studies in Fuzziness and Soft Computing, vol. 114, pp. 117–155. Physica-Verlag HD (2003)

    Google Scholar 

  3. Avron, A., Konikowska, B., Zamansky, A.: Modular construction of cut-free sequent calculi for paraconsistent logics. In: 2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 85–94 (2012)

    Google Scholar 

  4. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for c-systems with generalized finite-valued semantics. Journal of Logic and Computation 23(3), 517–540 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic and Computation 15(3), 241–261 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beklemishev, L., Gurevich, Y.: Propositional primal logic with disjunction. Journal of Logic and Computation (2012)

    Google Scholar 

  7. Béziau, J.-Y.: Sequents and bivaluations. Logique et Analyse 44(176), 373–394 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Bjørner, N., de Caso, G., Gurevich, Y.: From primal infon logic with individual variables to datalog. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 72–86. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Blass, A., Gurevich, Y.: Abstract hilbertian deductive systems, infon logic, and datalog. Information and Computation 231, 21–37 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cai, J., Paige, R.: Using multiset discrimination to solve language processing problems without hashing. Theoretical Computer Science 145(12), 189–228 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cotrini, C., Gurevich, Y.: Basic primal infon logic. Journal of Logic and Computation (2013)

    Google Scholar 

  12. Degtyarev, A., Voronkov, A.: The inverse method. In: Handbook of Automated Reasoning, vol. 1, pp. 179–272 (2001)

    Google Scholar 

  13. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. The Journal of Logic Programming 1(3), 267–284 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 89–134. Elsevier (2008)

    Google Scholar 

  15. Gurevich, Y., Neeman, I.: Logic of infons: The propositional case. ACM Trans. Comput. Logic 9, 1–9 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Mathematical Logic Quarterly 33(5), 423–432 (1987)

    Article  MATH  Google Scholar 

  17. Kowalski, R.: Logic for Problem-solving. North-Holland Publishing Co., Amsterdam (1986)

    Google Scholar 

  18. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 8, pp. 61–145. Springer (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lahav, O., Zohar, Y. (2014). SAT-Based Decision Procedure for Analytic Pure Sequent Calculi. In: Demri, S., Kapur, D., Weidenbach, C. (eds) Automated Reasoning. IJCAR 2014. Lecture Notes in Computer Science(), vol 8562. Springer, Cham. https://doi.org/10.1007/978-3-319-08587-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08587-6_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08586-9

  • Online ISBN: 978-3-319-08587-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics