Skip to main content

Discovering Collective Group Relationships

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8506))

Abstract

In many real-world situations, individual components of complex systems tend to form groups to interact collectively. The grouping effectuates collective relationships. On the other hand, collective relationshsips stimulate individual components to form groups. To gain clear understanding of the structure and functioning of these systems, it is necessary to identify both group formation and collective relationships at the same time. In this paper, we define the notation of collective group relationships (CGRs) between two sets of individual components and propose a method to discover CGRs from heterogeneous datasets. The method integrates canonical correlation analysis (CCA) with graph mining to find top-k CGRs. Several experimental studies are conducted on both synthetic and real-world datasets to demonstrate the effectiveness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive Quasi-Clique Detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Cao, K.A.L., Martin, P.G.P., Granié, C.R., Besse, P.: Sparse canonical methods for biological data integration: Application to a cross-platform study. BMC Bioinformatics 10, 34 (2009)

    Article  Google Scholar 

  3. Chen, X., Liu, H.: An efficient optimization algorithm for structured sparse CCA, with applications to eQTL Mapping. Statistics in Biosciences 4(1), 3–26 (2012)

    Article  Google Scholar 

  4. Chen, J., Bushman, F.D., Lewis, J.D., Wu, G.D., Li, H.: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics 14(2), 244–258 (2013)

    Article  Google Scholar 

  5. Chiu, G.S., Westveld, A.H.: A unifying approach for food webs, phylogeny, social networks, and statistics. PNAS 108(38), 15881–15886 (2011)

    Article  Google Scholar 

  6. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment P09008 (2005)

    Google Scholar 

  7. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  8. Hotelling, H.: Relations Between Two Sets of Variates. Biometrika 28(3/4), 321–377 (1936)

    Article  MATH  Google Scholar 

  9. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)

    Article  Google Scholar 

  10. Lee, W., Lee, D., Lee, Y., Pawitan, Y.: Sparse Canonical Covariance Analysis for High-throughput Data. Statistical Applications in Genetics and Molecular Biology 10(1): Article 30 (2011)

    Google Scholar 

  11. Lin, D., Zhang, J., Li, J., Calhoun, V.D., Deng, H.W., Wang, Y.P.: Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics 14, 245 (2013)

    Article  Google Scholar 

  12. Liu, G., Wong, L.: Effective Pruning Techniques for Mining Quasi-Cliques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 33–49. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Liu, H., Li, J., Liu, L., Liu, J., Lee, I., Zhao, J.: Exploring Groups from Heterogeneous Data via Sparse Learning. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 556–567. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 26113 (2004)

    Article  Google Scholar 

  15. Parkhomenko, E., Tritchler, D., Beyene, J.: Sparse Canonical Correlation Analysis with Application to Genomic Data Integration. Statistical Applications in Genetics and Molecular Biology, 8(1), Article 1 (2009)

    Google Scholar 

  16. Søkilde, R., Kaczkowski, B., Podolska, A., Cirera, S., Gorodkin, J., Møller, S., Litman, T.: Global microRNA Analysis of the NCI-60 Cancer Cell Panel. Molecular Cancer Therapeutics 10, 375–384 (2011)

    Article  Google Scholar 

  17. Soneson, C., Lilljebjörn, H., Fioretos, T., Fontes, M.: Integrative analysis of gene expression and copy number alterations using canonical correlation analysis. BMC Bioinformatics 11, 191 (2010)

    Article  Google Scholar 

  18. Smyth, G.K.: Limma: linear models for microarray data. Statistics for Biology and Health. Bioinformatics and Computational Biology Solutions using R and Bioconductor. pp. 397-420. Springer (2005)

    Google Scholar 

  19. Tang, L., Liu, H., Zhang, J., Nazeri, Z.: Community Evolution in Dynamic Multi-Mode Networks. In: 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), Las Vegas, USA, pp. 677–685 (2008)

    Google Scholar 

  20. Waaijenborg, S., Zwinderman, A.H.: Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks. BMC Bioinformatics 10, 315 (2009)

    Article  Google Scholar 

  21. Wagner, G.P., Pavlicev, M., Cheverud, J.M.: The Road to Modularity. Nature Reviews Genetics 8(12), 921–931 (2007)

    Article  Google Scholar 

  22. Witten, D., Tibshirani, R., Hastie, T.: A Penalized Matrix Decomposition, with Applications to Sparse Principal Components and Canonical Correlation Analysis. Biostatistics 10(3), 515–534 (2009)

    Article  Google Scholar 

  23. Yan, J.J., Zheng, W., Zhou, X., Zhao, Z.: Sparse 2-D canonical correlation analysis via low rank matrix approximation for feature extraction. IEEE Signal Process Letters 19(1), 51–54 (2012)

    Article  Google Scholar 

  24. Yeung, K.Y., Medvedovic, M., Bumgarner, R.E.: From co-expression to co-regulation: how many microarray experiments do we need? Genome Biology, 5(7), Article R48 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Karim, S.M.M., Liu, L., Li, J. (2014). Discovering Collective Group Relationships. In: Wang, H., Sharaf, M.A. (eds) Databases Theory and Applications. ADC 2014. Lecture Notes in Computer Science, vol 8506. Springer, Cham. https://doi.org/10.1007/978-3-319-08608-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08608-8_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08607-1

  • Online ISBN: 978-3-319-08608-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics