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Abstract. Clinicians could model the brain injury of a patient through his brain 
activity. However, how this model is defined and how it changes when the pa­
tient is recovering are questions yet unanswered. In this paper, the use of MedVir 
framework is proposed with the aim of answering these questions. Based on com­
plex data mining techniques, this provides not only the differentiation between 
TBI patients and control subjects (with a 72% of accuracy using 0.632 Bootstrap 
validation), but also the ability to detect whether a patient may recover or not, 
and all of that in a quick and easy way through a visualization technique which 
allows interaction. 

1 Introduction 

The possibility of detecting if a patient with a traumatic brain injury (TBI) can be re­
habilitated by means of a treatment is not an easy work, however it is interesting. This 
is because it would allow to adjust and personalize treatments (in time and economy) 
of TBI patients to the needs of each one. One of the possibilities of evaluating the im­
pact of brain injury is using MagnetoEncephaloGraphic (MEG) recordings through the 
obtaining of the functional connectivity patterns. These recordings are performed dur­
ing several minutes of brain activity per individual (that is, time series of 148 sensors 
included in MEG machine). 

The data generated by MEG are very complex (multidimensional and multivariate) 
and require much time for analysis. Nowadays, the idea of getting a prediction of the 
evolution of a TBI patient is out of the reach of clinicians, even without taking into ac­
count the analysis time. But if the data gathering process through MEG happens repeat­
edly, then is further complicated, so it is necessary to carry out an analysis mechanism 
that allows to draw conclusions (and extract new knowledge) in a quick and easy way. 

mailto:antonio.gracia@upm.es
mailto:nazareth@pluri.ucm.es
mailto:napaul@med.ucm.es


In this work we were aimed to design a 3D visual interface for medical analysis easy 
to be used by clinicians. MedVir is a robust and powerful 3D visual interface to analyze, 
in this case, MEG data. After several stages, MedVir represents the information in two 
and three dimensions. Furthermore, the interface allows the experts to interact with the 
data in order to provide a more exhaustive analysis in the shortest time possible. 

The paper is organized as follows: in section 2 a short overview of related work 
is presented. Section 3 presents the MedVir framework. Section 4 describes the TBI 
data obtaining and the experiments carried out. Finally, the conclusions and future lines 
(section 5) are reported. 

2 Related Work 

Nowadays, from the Data Mining point of view, there is no researches about TBI anal­
ysis through MEG recordings. However, three of the pillars supporting the proposed 
framework are very known there: Feature Subset Selection, Dimensionality Reduction 
and Data Visualization. Thus, in this section a short overview about theses points is 
presented. 

Feature Subset Selection (FSS) problem [1] deals with the search of the best sub­
set of attributes to train a classifier. This is a very important issue in several areas of 
knowledge discovery such as machine learning, optimization, pattern recognition and 
statistics. The goal behind FSS is the appropriate selection of a relevant subset of fea­
tures upon which to focus the attention of a classification algorithm, while ignoring the 
rest. The FSS problem is based on the fact that the inclusion of more attributes in a 
training dataset does not necessarily improve the performance of the model. Two dif­
ferent kinds of variables can be distinguished: irrelevant (variable has no relation with 
the target of the classifier) and redundant (variables whose information can be deduced 
from other variables) features. 

The literature describes several approaches to tackle this problem. To achieve the 
best possible performance with a particular learning algorithm on a particular training 
set, a FSS method should consider how the algorithm and the training set interact. Thus, 
there are two alternatives to consider this interaction: Filter [2] (analytical and statis­
tical information among the features to evaluate each available feature) and Wrapper 
methods [3] (they use the induction algorithm itself to evaluate the performance of each 
candidate feature selection). 

Wrapper methods often achieve better feature selections but the computational cost 
is higher. There are two main aspects that influence deeply on the computational cost 
of these techniques: (i) the optimization algorithm could be more or less exhaustive. 
For example, forward selection, backward elimination, and their stepwise variants can 
be viewed as simple hill-climbing techniques in the space of feature subsets; (ii) the 
robustness of the validation method (for instance LOOCV, Bootstrap, . . . ) applied to 
evaluate the quality of the results obtained by each candidate selection. It includes the 
measure to use, but also the validation schema. 

An accurate FSS technique based on wrapper approaches that combines both a pow­
erful search method and a robust validation approach is still a challenge, particularly in 
high-dimensional datasets. An appropriate alternative is to use a hybrid approach [4,5]. 



The most common one is the use of a filter to reduce the number of features (features 
are ranked based on their representativeness and the worst ones are removed), and a 
wrapper to perform the final selection. This represents a balance between the number 
of features to make the wrapper technique reasonable in computational time and the 
number of features included in the optimal subset selection. 

As regards Data Visualization (DV), and specifically Multidimensional (unknown 
relations between attributes) Multivariate Data Visualization (MMDV), there are four 
broad categories [6] according to the approaches taken to generate the resulting visu­
alizations. The first, Geometric projection, includes techniques that aim to find infor­
mative projections and transformations of multidimensional datasets [7] such as the 
Scatterplot Matrix [8], the Prosection Matrix [9], Parallel Coordinates [10] and Star 
Coordinates [11]. The second category groups the Pixel-oriented techniques [7] that 
represent a feature value by a pixel based on a color scale. This group includes the 
Space Filling Curve [12], the Recursive Pattern [13] and Spiral and Axes Techniques 
[14], among others. The techniques of the third category, Hierarchical techniques, sub­
divide the data space and present sub-spaces in a hierarchical way [7], for example, 
the Hierarchical Axis [15] and Dimensional Stacking [16] methods. The last category, 
Iconography, represents icon-based techniques that map the multidimensional data to 
different icons, or glyphs [17]. Some of them are Chernoff Faces [18] and Star Glyph 
[19]. 

Another way of visualizing multidimensional and multivariate data is by carrying out 
a Dimensionality Reduction (DR) process, which is one of the usual operations in Data 
Analysis (DA) [20]. Historically, the main reasons for reducing the dimensionality of 
the data is to remove possible noise or redundacy in the data, and reducing the compu­
tational load in further processing. One of the fields in which DR techniques for DV are 
currently very useful, is the scientific interactive visualization field, or Visual Analytics 
(VA). For DV, one of the main applications of DR is to map a set of observations into a 
2 or 3 dimensional space that preserves the intrinsic geometric structure of the data as 
much as possible [21]. More related work about DR is presented in [22]. 

3 MedVir 

The MedVir framework has been devised to abstract the clinicians the slow and tedious 
task of extracting conclusions about patients, treatments and rehabilitation when they 
work with multidimensional multivariate data analysis. The idea is that the expert only 
has to select the data to work with, and MedVir carries out a pipeline containing the 
most important steps of the KDD (Knowledge Discovery in Databases) process. As 
a result, data can be easily visualized in a virtual environment allowing a complete 
interaction, in order to get more conclusions about the interests of the clinicians. 

MedVir comprises the following stages, as illustrated in Figure 1: i) data pre­
processing, in which a set of data transformations and formatting are carried out so 
that the data can be properly treated by the following steps; ii) selection of a reduced 
number of attributes that best describe the original nature of the dataset. This step is car­
ried out by using an extensive and intensive FSS process, in which five filter methods, 
four wrapper methods and four classification algorithms are used to obtain the models 



that perform better in supervised learning tasks; iii) dimensionality data reduction up to 
2 or 3 dimensions to correctly represent the data on the display, with a minimum loss 
of quality; iv) visualization of the data facilitating a quick data interpretation. 

Fig. 1. The MedVir framework 

Data Pre-processing. Real data often have a lot of redundancy, as well as incorrect or 
missing values, depending on different factors. Thus, it is usually necessary to perform 
some techniques in order to clean up and prepare the data. The algorithms included in 
this stage are replicated features handling, missing value handling and imputing miss­
ing values with KNNImpute algorithm [23]. Real data often have a lot of redundancy, as 
well as incorrect or missing values, depending on different factors. Thus, it is usually 
necessary to perform some techniques in order to clean up and prepare the data. The al­
gorithms included in this stage are replicated features handling, missing value handling 
and imputing missing values with KNNImpute algorithm [23]. 

Feature Subset Selection. The second stage consists of a FSS process, which is respon­
sible for selecting a reduced subset of attributes, from a very large number of initial 
attributes. The aim is to obtain a reduced dataset that retains or improves efficiency in 
many different Data Mining tasks. Thus, the main advantage of this stage is that the 
number of data attributes are strongly reduced from tens of thousands to a few dozens 
of attributes, thus reducing the computational cost and retaining or even improving their 
accuracy in different tasks, such as supervised or unsupervised classification. It is worth 
mentioning that the study presented here is limited to supervised classification tasks. 

This step consists of two sub-stages: filter and wrapper. To implement the filter ap­
proach, five filter methods were used (Information gain, ReliefF, Symmetrical Uncer­
tainty, Gain ratio and Chi squared) [24,25], and each one of these is executed P times, 
that is, for the different numbers of attributes to be filtered (eg, 500, 1000, 2000, ...). 
Once the filtered dataset is obtained, a wrapper process is carried out, using four search 
methods (Greedy, Best first, Genetic and Linear forward selection (LFS)) [24,25] and 
four classification algorithms (C4.5, SVM, Bayes Net and K-NN) [24,25] to obtain a 
reduced dataset containing, most of the cases, a few dozens of attributes. The combined 



use of wrapper and filter methods generate 80P different models and those that pro­
duces the best values, in terms of accuracy, are selected. To validate the results of each 
model, the 0.632 Bootstrap [26] validation method has been used. Note that P can be set 
according to the number of attributes contained in the original data (e.g., if the dataset 
has 5000 attributes, P executions could be 6: 500, 1000, 2000, 3000, 4000 and 4500). 

Dimensionality Reduction. The optimal dataset obtained in the previous stage can still 
not be directly visualized in two or three dimensions, since in many cases these data are 
supposed to have more than 3 attributes. We say optimal because, at this point, a dataset 
with a minimum number of attributes has been obtained, which always preserves or 
even improves (never worsens) efficacy when carrying out different tasks. Therefore, 
the third stage is responsible for obtaining a set of vector axes (generated by a particular 
DR algorithm) to be used in the next stage of MedVir’s pipeline, so that the reduced data 
are transformed to be visualized properly in 2 or 3 dimensions. 

Different DR algorithms can be, indeed, used at this stage. For example, for cluster­
ing tasks, one might be interested in using PCA, since due to its great ability to obtain 
the directions of maximum variance of data, it produces minimum loss of quality of 
data [22], thus making more reliable the visualization of the real structure of data. In­
stead, LDA could be useful for supervised tasks, because even if the effectiveness in 
the preservation of the original geometry data is drastically reduced [22], the spatial 
directions of maximum discrimination between classes are easily obtained. This will 
facilitate the separation of different classes when the data are displayed. Therefore, de­
pending on the used DR algorithm, a set of vectors are generated (as many vectors 
as attributes has the reduced dataset prior to this stage) to be used in the last stage of 
MedVir. 

Data Visualization. The last stage generates the final visualization of the reduced data. 
To do so, the star coordinates (SC) algorithm is used [27]. SC algorithm works as fol­
lows: first, each attribute is represented as a vector radiating from the center of a circle 
to its circumference. Then the coordinate axes are arranged onto a flat (2-dimensional) 
surface forming equidistant angles between the axes. The mapping of an D-dimensional 
point to a 2-dimensional Cartesian coordinate is computed by means of the sum of all 
unit vectors on each coordinate, multiplied by the data value for that coordinate. In this 
paper, the input to the SC algorithm comprises two different elements: the reduced data 
and the set of vector axes generated in the previous stage. Thus, final visualization will 
be adjusted to the DR algoritm’s requirements. 

The MedVir’s visualization and interaction comprise, among many others, the carry­
ing out of the following tasks: 1) if two points of different class (color) are very close or 
even overlapped in the visualization. This could strongly suggest that the expert might 
have made a mistake when originally labelling those instances. 2) if an attribute is se­
lected, all points will be resized based on that attribute’s value. This could represent 
the importance or influence of that attribute on a particular class. 3) if one or more at­
tributes are selected and their lengths are modified, we would be giving them more or 
less weight on the representation, so all the instances will be reorganized based on those 
new weights. For example, if we give a greater weight to an attribute and a point with 
class A approaches another point with class B, this could suggest that a higher value 



of that attribute will mean a change in instance status from class A to B. 4) selected 
attributes can be removed to reduce their influence on the data representation. 5) if the 
instances are patients, their clinical information can be visualized quickly and easily. 
6) a different visual dispersion among members of the same class and other classes 
may suggest different levels of cohesion between different instances. 7) display can be 
adjusted to achieve a comfortable interface, and the 2D and 3D visualization is repre­
sented by different colors, sizes, transparencies and shapes. Furthermore, navigation is 
simple and intuitive. 

4 MedVir Applied to TBI 

MedVir was applied to a real world case (figure 2), that is a Traumatic Brain 
Injury (TBI) rehabilitation prediction [28]. The study was performed by 12 control 
subjects and 14 patients with brain injury. All patients have completed a neuroreha-
bilitation program, which was adapted specifically to each individual’s requirements. 
This program was conducted in individual sessions attempting to offer an intensive 
neuropsychological-based rehabilitation, provided in 1h sessions for 3-4 days a week. 
In some cases, cognitive intervention was coupled with other types of neurorehabilita-
tion therapies according to the patient’s profile. 

Patients had MEG recordings before and after the neuropsychological rehabilitation 
program. In this study control subjects were measured once, assuming that brain net­
works do not change in their structure in less than one year, as demonstrated previously 
in young. 

Fig. 2. MEG data obtaining process 

The magnetic fields were recorded using a 148-channel whole-head magnetometer 
confined in 40 magnetically shielded room. MEG data were submitted to an interac­
tive environmental noise reduction procedure. Fields were measured during a no task 
eyes-open condition. Time-segments containing eye movements or blinks or other myo-
genic or mechanical artefacts were rejected and time windows not containing artefacts 
were visually selected by experienced investigators, up to a segment length of 12s. By 
using a wavelet transformation [29], we perform a time-frequency analysis of rhyth­
mic components in a MEG signal, and hence estimate the wavelet coherence for a pair 
of signals, a normalized measure of association between two time series [30]. Finally, 
MEG data were digitalized and transformed into a simple dataset of 26 instances x 
10878 attributes, where each instance is a patient and each attribute is the relationship 
between each pair of channels. 



4.1 Experiments 

Experiments on the aforementioned dataset consists of a FSS process and visualization 
of the obtained data. 

The first stage, FSS, is responsible for selecting, from among the 10,878 original 
attributes, a set of reduced data which improve accuracy when classifying new patients, 
compared to the original data. To classify new patients, a specific dataset consisting of 
14 new instances is used. The FSS process consists of two parts: the first one uses filter 
methods, and the second one uses wrapper methods on the previous filtered attributes. 

In total, 480 different models (5 filter methods x 6 number of attributes to be filtered x 
4 search methods x 4 classification algorithms) have been obtained over the two parts, 
of which those who obtained the best accuracy were selected. The aim was to apply 
those models to the data to eventually visualize them. Note that the P value, described 
in Section 3 has been set to 6, since each filter method is carried out on the 500, 1000, 
2000, 3000, 4000 and 5000 best attributes. The implementation of these models has 
been carried out in parallel and using the Magerit supercomputer, thus 480 nodes of the 
supercomputer have been used simultaneously to obtain the results. At the end of the 
process, a ranking of the 480 models was obtained, sorted by time spent to carry out the 
experiments (see Figure 3). Furthermore, the results have been validated using 0.632 
Bootstrap method, as indicated in Section 3. 

Model 
TBI Relieff 500 Genetic KNN 
TBI SymmetricalUncert 5000 Genetic SVM 

... 

... 

% Accuracy (Original) 
64.546 
67.893 

... 

... 

Accuracy (Filtered) 
63.996 
63.411 

... 

... 

Accuracy (Wrappered) 
71.168 
72.243 

... 

... 

N° of attributes 
10 
65 

... 

... 

Time (s) 
578.041 
6126.37 

... 

... 

Fig. 3. An example of the ranking of models obtained after the FSS stage 

The criterion to select the best models is based on the highest values of accuracy 
achieved after the carrying out of the wrapper methods (fourth column from left). So, 
the models that have obtained the best accuracy are: 

– TBI_Relieff_500_Genetic_KNN (71.16%). The first model has used the relieff 
filter to obtain the best 500 attributes. After this, a genetic algorithm carried out an 
extensive search to select a subset of the 10 best attributes that best discriminate 
between the original classes, when classifying the instances by using the K-NN 
classification algorithm. 

– TBI_SymmetricalUncert_5000_Genetic_SVM(72.24 %). The second model has 
used the symmetrical uncert filter to rank the best 5000 attributes. Then, a genetic 
algorithm has selected a subset of the 65 best attributes that best discriminate be­
tween the original classes, when using the SVM classification algorithm. 

Therefore, once the two reduced datasets were obtained, the classification of new 
patients was carried out. The results of the classification task are shown in Figure 4 (0 
represents control subjects and 1 represents TBI patients). Except for patients 3 and 4 
contained in the test dataset, there is a clear unanimity between the classification carried 
out by both models. 
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Fig. 4. Two models to classify the new patients 

In the last step, visualization, MedVir represents the two datasets (figure 5). There, 
the blue color represents control subjects, whiles red means TBI patients and new clas­
sified patients are represented in magenta. The dotted line indicates the linear decision 
boundary in classification tasks. And it is at this time, when experts analyze the re­
sulting work in order to extract the maximum possible information and draw relevant 
conclusions. 

Fig. 5. Visualization in MedVir 

5 Conclusions 

MedVir can visualize multidimensional and multivariate medical data in 3D, so this al­
lows conclusions to be obtained in a more simple, quick and intuitive way. Furthermore, 
the use of MedVir allows the clinicians to interact with the data they collect daily. 

Specifically for this study, MedVir allows to effectively segment between control 
subjects and TBI patients with a 72% of accuracy. This is not a very high value, but it 
must be, indeed, taked into account that the validation mechanism used (Bootstrap) is 
certainly pessimistic due to the small number of instances in the data, so this strongly 
penalizes the final accuracy. In this paper, MedVir has been presented as a quick and 
easy tool to classify and visualize new subjects included in the TBI study. Visualization 
and interaction with the data can provide extra useful information to discern between 
uncertain class patients, after obtaining the results of a classification. In addition, Med-
Vir could even be used to estimate if a TBI patient is in process of rehabilitation or not, 
so clinicians could be able to change the treatment or stop it. 

TRAIN 26 

TEST 14 

B A 



However, there will be further research behind this work. In terms of data analysis, 
regression models and neuropsychological tests are going to be included to estimate 
the exact situation of a TBI patient in the recovery process, and how much treatment 
time he will need to fully rehabilitate. Another interesting future research point is the 
DR of data based on clustering of MEG sensors (creation of brain regions based on 
sensors locations and their relationships). In terms of visualization, we want to improve 
the user’s interaction, using IO devices such as Leap Motion (MedVir controlled by 
gestual movements) and voice recognition (by means of expert orders). Furthermore, 
the interaction with the data visualization should be further studied by carrying out 
usability tests to test its reliability. 

Concluding, MedVir, as a analysis tool, has successfully served for its purpose, al­
lowing to know the status of rehabilitation of the TBI patients in an easy way. Of course, 
this tool could be applied to another interesting field, in which the number of attributes 
are too high that makes impossible a direct data analysis. 
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