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Abstract. We study the parameterized complexity of graph interdiction
problems. For an optimization problem on graphs, one can formulate an
interdiction problem as a game consisting of two players, namely, an
interdictor and an evader, who compete on an objective with opposing
interests. In edge interdiction problems, every edge of the input graph
has an interdiction cost associated with it and the interdictor interdicts
the graph by modifying the edges in the graph, and the number of such
modifications is constrained by the interdictor’s budget. The evader then
solves the given optimization problem on the modified graph. The action
of the interdictor must impede the evader as much as possible.

We focus on edge interdiction problems related to minimum spanning
tree, maximum matching and maximum flow problems. These problems
arise in different real world scenarios. We derive several fixed-parameter
tractability and W[1]-hardness results for these interdiction problems
with respect to various parameters. Hereby, we show close relation be-
tween edge interdiction problems and partial covering problems on bi-
partite graphs.

1 Introduction

Given an optimization problem on graphs, the corresponding interdiction prob-
lem can be formulated as a game consisting of two players, namely, an inter-
dictor and an evader, who compete on an objective with opposite interests. In
edge interdiction problems, every edge of the input graph has an interdiction
cost associated with it and the interdictor interdicts the network by modifying
edges in the graph, and the number of such modifications are constrained by
the interdictor’s budget. The evader then solves the given optimization problem
on the modified graph. The action of the interdictor must impede the evader as
much as possible.

In this paper, we focus on edge interdiction problems related to minimum
spanning tree, maximum matching and maximum flow problems. These interdic-
tion problems arise in different real world scenarios, e.g., detecting drug smug-
gling [21,19], military planning [20], analyzing power grid vulnerability [18] and
hospital infection control [3].
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A spanning tree of a connected graph G is a tree composed of all the vertices
and some of the edges of G. The minimum spanning tree (MST) problem is to
find a spanning tree whose total weight is minimum. Let η(G) be the weight
of MST of G. A matching in a graph is a set of edges such that no two edges
share an endpoint. Let ν(G) be the weight of maximum matching in G. We say
a matching M saturate a set U ⊆ V if for each vertex u ∈ U , there exists one
edge in M with u as its endpoint. For G = (V,E), G − I is the graph resulting
by removing a set of edges I from G. A set of edges M of G = (V,E) is called
an edge dominating set if every edge of E \ M is adjacent to at least one edge
in M . An independent edge dominating set is an edge dominating set in which
no two edges are adjacent. A minimum maximal matching in a graph G is a
maximal matching of the minimum size, denoted by λ(G). An independent edge
dominating set is a minimum maximal matching [8].

We start with the introduction of b-Most Vital Edges in MST (b-MVE)
which is defined in the literature follows:

Input: An edge-weighted graph G = (V,E) with weight function w : E → Z≥0,
two positive integers b and r.

Output: A subset I ⊆ E with |I| ≤ b such that η(G− I) ≥ r.

Frederickson and Solis-Oba [9] proved that b-MVE is NP-hard even if the
weights of the edges are either 0 or 1. They also gave an Ω(1\log k)-approximation
algorithm for b-MVE. This problem has also been studied from view point of
exact algorithms and randomized algorithms [13,14].

The Maximum Matching Edge Interdiction (MMEI) problem, intro-
duced by Zenklusen [24], is defined as follows:

Input: A weighted graph G = (V,E) with weight function w : E → Z≥0, an
interdiction cost function c : E → Z≥1, and two positive integers b and m.

Output: A subset I ⊆ E with c(I) ≤ b such that ν(G − I) ≤ m.

MMEI is NP-hard on bipartite graphs, even with unit edge weights and unit
interdiction costs [24]. Zenklusen [24] introduced a constant factor approxima-
tion algorithm for MMEI on graphs with unit edge weights. Recently, Dinitz and
Gupta provided a constant-factor approximation for a generalization of match-
ing interdiction called packing interdiction [5]. Zenklusen [24] also showed that
MMEI is solvable in pseudo-polynomial time on graphs with bounded treewidth.
Pan and Schild [16] proved that weighted MMEI remains NP-hard even on pla-
nar graphs and gave a pseudo-polynomial time approximation scheme for the
same on planar graphs.

The s-t Flow Edge Interdiction (s-t FEI) is defined as follows [20]:

Input: A directed graph G = (N,A) with distinguished vertices s and t, pos-
itive integer capacity uij for each arc (i, j) ∈ A, an interdiction cost func-
tion c : A → Z≥0, two positive integers b and r.

Output: A set of arcs A′ with c(A′) ≤ b such that the maximum s-t flow
in G−A′ has value at most r.
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Philips [17] proved that s-t FEI is strongly NP-complete for general graphs,
even of degree at most 3. Pan and Schild [16] recently studied some variants of
s-t FEI on planar graphs.

We study the parameterized complrtial coverexity [15] of the three edge in-
terdiction problems defined above. First, we show that b-MVE is W[1]-hard with
respect to r. In graphs with edges of weights only 0 or 1, b-MVE is FPT with
respect to b. The reduction from Clique to MMEI by Zenklusen [23] already
shows that MMEI with respect to b is W[1]-hard, even in bipartite input graphs
with unit edge weights and interdiction costs . Complementing this result, we
prove that MMEI with m as parameter is W[1]-hard as well, even in graphs
with unit edge weights and interdiction cost. In contrast to parameter b, MMEI
becomes fixed-parameter tractable (FPT) with respect to m, if further restricted
to bipartite input graphs. Moreover, taking both b and m as parameters leads
also to FPT when restricted to instances with unit edge weights. Concerning s-t
FEI, we prove that the parameterization with b is W[1]-hard, complementing
the result by Wood [21], that s-t FEI is W[1]-hard with respect to r.

We observe some close relation between partial covering problems on bipartite
graphs and edge interdiction problems. The goal of a partial covering problem
is not to cover all elements but to minimize/maximize the number of covered
elements with a specific number of sets. For instance, the Partial Vertex
Cover (k-PVC) problem asks for k vertices maximizing the number of covered
edges. Partial covering problems have been studied intensively not only because
they generalize classical covering problems, but also because of many real life
applications, see for example [2,4,1,7].

Our findings about the relation between partial covering problems and edge
interdiction problems can be summarized as follows: First, we give a parame-
terized reduction from the W[1]-hard k-PVC problem to MMEI, leading to the
W[1]-hardness of MMEI with respect to m. Then, we prove an equivalent re-
lation between a special version of MMEI and k-PVC on bipartite graphs and
thus derive the FPT result of this special case of MMEI. Moverover, we prove the
W[1]-hardness of k-PVC on bipartite graphs with the number of uncovered edges
as parameter by a reduction from MMEI with respect to parameter b. Further,
we introduce a new edge interdiction problem which turns out to be equivalent
to the Partial Edge Dominating Set problem and prove W[1]-hardness for
both. Finally, we study another bipartite version of k-PVC.

Preliminary For a vertex v, the vertices which are adjacent to v in G form the
neighborhood N(v) of v. For U ⊆ V , let N(U) denote the set of all vertices
which are adjacent to those in U . We denote the size of the neighborhood of v
in G as degG(v). A degree-1 vertex is a vertex with degG(v) = 1. A path from
vertex a to vertex b is an ordered sequence a = v0, v1, . . . , vm = b of distinct
vertices in which each adjacent pair (vj−1, vj) is linked by an edge. The distance
between two vertices is the number of edges on the shortest path between them,
while the distance between two edges e1 and e2 is the minimum of the distances
of their endpoints. A subgraph H = (V ′, E′) of a graph G = (V,E) is a pair
V ′ ⊆ V and E′ ⊆ E. We say that H = (V ′, E′) is an induced subgraph of G if
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V ′ ⊆ V and E′ = {{u, v} ∈ E|u, v ∈ V ′} and we denote H = G[V ′]. For a set of
edges S, let V (S) denote the set of endpoints of S. An edge e is dominated by
another edge e′ if they share at least one endpoint. An edge e is covered by a
vertex v if v is one of the endpoints of e. A disconnecting set of edges F is such
that G−F has more connected components than G does. A connected graph G
is k-edge-connected if every disconnecting edge set has at least k edges.

2 b-Most Vital Edges in MST

We consider two parameterizations for b-MVE. Firstly, we define Minimum k-
way Edge Cut which is vital in the proofs of the following two results.

Minimum k-way Edge cut

Input: An undirected graph G = (V,E) with unit edge weight and non-negative
integers k and s.

Question: Is there a set S ⊆ E with |S| ≤ s such that, G − S has at least k
connected components?

Theorem 1. b-Most Vital Edges is W[1]-hard with respect to the weight r
of the MST in G− I.

Proof. We give a parameterized reduction from Minimum k-Way Edge Cut.
Downey et al. [6] proved that Minimum k-Way Edge Cut is W[1]-hard with
parameter k. Given an instance G = (V,E) for Minimum k-Way Edge Cut,
we create an instance G′ = (V ′, E′) for b-MVE as follows: For each vertex v ∈ V ,
we create a vertex v ∈ V ′. For each edge {u, v} ∈ E, create an edge {u, v} ∈ E′

with weight 0. For each pair of vertices u, v in V ′ such that {u, v} /∈ E, we add
a connection gadget M between u and v in the following way: Create a clique
with b + 1 vertices as gadget M such that all edges in M have weight 0. Now,
connect u to all vertices in M with edges of weight 1 and v to all vertices in M
with edges of weight 0. Let X ′ be the set of all vertices in connection gadgets
and Y ′ be the set of edges in G′ with at least one endpoint in X ′. Now we show
that G has a k-way edge cut of size s iff at most b = s edges can be deleted from
G′ such that MST of the remaining graph is at least r = k − 1.

(⇒) Given the graph G, let S be the solution for Minimum k-way Edge
Cut. Now, G−S consists of at least k connected components. We take the edges
in G′ corresponding to those in S as the solution S′ for b-MVE. We can observe
that G′[V ′ \X ′]− S′ consists of at least k connected components. Hence, every
spanning tree of G′ − S′ must pass through at least k − 1 connection gadgets
M . Let M ′ be one connection gadget through which the MST in G′ −S′ passes.
Let M ′ be connected to u ∈ V ′ \X ′ with edges of weight 0 and to v ∈ V ′ \X ′

with edges of weight 1. The MST can span all vertices in M ′ by using b + 1
edges between u and M ′ and connect u to v by taking exactly one edge between
M ′ and v. The MST must pass through at least k − 1 such connection gadgets.
Moreover, each connected component of G′[V ′ \X ′] − S′ has a MST of weight
0 and the vertices in the remaining connection gadgets can be included in the
MST by taking only weight-0 edges. This gives an MST of G′ of weight k − 1.

4



(⇐) Let S′ be the solution for b-MVE on G′ and the MST of G′ − S′ has
weight at least k − 1. We first prove that S′ ∩ Y ′ = ∅. Let M be the connection
gadget between u and v. We can observe that the minimum weight of MST
of G[M ∪ {u, v}] is 1. Since M is a clique of size b + 1 and both u and v are
connected to all vertices in M , the removal of arbitrary b edges from G[M∪{u, v}]
cannot increase the weight of MST of G[M ∪ {u, v}]. Hence, S′ ∩ Y ′ = ∅. Now,
in order to increase the weight of MST of G′ − S′, the interdictor must force
the maximum usage of weight-1 edges (which are available only in connection
gadgets) in MST. To this end, we need to maximize the number of connected
components in G′−Y ′. Hence, S′ is chosen in such a way that G′−{Y ′∪S′} has
the maximum number of connected components. This corresponds to Minimum
k-Way Edge Cut in G, which completes the proof. ⊓⊔

Theorem 2. Given an instance with edge weights only 0 and 1, b-Most Vital
Edges is fixed-parameter tractable with respect to b.

Proof. Kawarabayashi and Thorup [12] proved that Minimum k-Way Edge
Cut is FPT with respect to s. Here, we use their algorithm as a black box. If
the input graph G is d-edge-connected with d ≤ b, then we can find an edge cut
S of size at most b for G. Since G−S is disconnected, we take S as a solution for
b-MVE and the weight of any MST of disconnected graphs is ∞. On the other
hand, if G is (b+ 1)-edge-connected, we need the following claim:

Claim. Given a (b+ 1)-edge-connected graph, a solution of b-MVE contains no
weight-1 edge.

Proof. Let V1 and V2 be an arbitrary partition of vertices of G such that V1∩V2 =
∅ and S be a solution of b-MVE. Let T be the minimum spanning tree of G−S.
Now, we show that if G is (b+1)-edge-connected, S does not contain any weight-
1 edge between vertices in V1 and V2. Since G is (b + 1)-edge-connected, there
is at least one edge between V1 and V2 in G − S. Hence, the worst-case cost of
connecting V1 and V2 in T is 1. So, it is never profitable to delete any edge of
weight 1 between V1 and V2. ⊓⊔

By this claim, if a (b+1)-edge-connected graph has only weight-1 edges, then
the solution is empty. Let G be an instance of b-MVE, we run the following:
Step 1. Delete all weight-1 edges from G. Let G − X be the resulting graph
where X is the set of all weight-1 edges in G.
Step 2. In each connected component of G − X , we run the FPT-algorithm
from [12] with s ranging from 1 to b. For each connected component C of G−X
we maintain a table A, where for each number 1 ≤ i ≤ b, we store the maximal
number of connected components that can be achieved by deleting i edges in C.
This table is of size b×2 for each connected component of G−X and can clearly
be filled in FPT time with respect to b.
Step 3. For each integer 1 ≤ i ≤ b, we sort the connected components of G−X
according to the decreasing order of the numbers of resulting components with i
edge deletions as returned by Step 2. For each i we save the top b entries in this
sorted list, resulting in a table B of size b× b.
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Step 4. Now, we enumerate all additive partitions of b. The partition func-
tion p(b) gives the number of different additive partitions of b without respect
to order which is clearly bounded by 2b−1. Such a partition can be computed in
time polynomial in b. Let, P1, P2, · · · , Pp(b) be the additive partitions of b.
Step 5. For each additive partition Pi we do the following: Assume that Pi

consists of j ≤ b integers. Now for each integer x ∈ Pi, we branch on the first j
entries corresponding to x from Table B, each branch assigning exactly one entry
to x, that is, one connected component for x from G−X . This will take O∗(bb)
time for each Pi. Since there are at most n connected components in G − X ,
Step 5 runs in O∗(bb) time.
Correctness. Correctness of Step 1 follows directly from the above claim. We
prove now in Step 5 it is sufficient to branch only on the first j entries cor-
responding to x from Table B. For each integer x ∈ Pi exactly one connected
component from G−X is assigned. Now, the top candidate for x in Table B will
not be assigned to x if and only if it is assigned to another integer y ∈ Pi. There
can be at most j− 1 such integers y ∈ Pi. Hence, it is sufficient to consider only
the first j ≤ b entries corresponding to x from Table B. Steps 1 and 3 can be
achieved in time polynomial in n. Steps 2, 4 and 5 are FPT with respect to b.
Hence we have an overall running time exponentially depending on b. ⊓⊔

3 Maximum Matching and S-T Flow Interdiction

In this section, we study the edge interdiction problems for maximum match-
ing and s-t flow problems from parameterized complexity point of view. The
reduction from Clique to MMEI in [23] is also a parameterized one, proving
that MMEI with respect to b is W[1]-hard, even on bipartite graphs with unit
edge weight and unit interdiction cost. Now, we prove a similar result for the
parameter m.

Theorem 3. MMEI with unit edge weight and interdiction cost is W[1]-hard
with respect to m.

Proof. We give a parameterized reduction from the W[1]-hard Partial Vertex
Cover (k-PVC) problem with parameter k [10]. Given an instance G = (V,E)
for k-PVC, we create an instance G′ = (V ′, E′) for MMEI in the following: We
initiate G′ with G and for each vertex in G′, we add |E| degree-1 neighbors.
Let Y be the set of degree-1 neighbors added in this way. Next, we show that G
has a set S of size k which covers at least x edges in G iff G′ has a solution I
with b ≤ |E|(|V | − k) + (|E| − x) and ν(G′ − I) ≤ m = k.

(⇒) Given a solution S of k-PVC on G, we construct the MMEI solution I
for G′ as follows: We add all edges in G′ which are not incident to any vertex in
S to I. Since S covers at least x edges in G, we add at most |E| − x edges from
E and |E|(|V | − k) edges between Y and V to I. In the subgraph G′ − I, every
edge is incident to vertices in S. Hence ν(G′ − I) is at most k.

(⇐) Let I be the given solution of MMEI for G′ with b ≤ |E|(|V | − m) +
(|E| − x) and ν(G′ − I) ≤ m. Since ν(G′ − I) is at most m, at most m vertices
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in G′[V ′ \ Y ]− I can have degree-1 vertices attached to them. Let X denote the
set of vertices in G′[V ′ \ Y ] − I which have degree-1 neighbors. To remove all
degree-1 neighbors of the vertices in V ′ \ X requires addition of |E|(|V | − m)
edges to I. Hence, the vertices in X must cover at least x edges in G and X is
solution for k-PVC for G. ⊓⊔

However, unlike for the parameter b, the parameterization of MMEI with m
becomes tractable, if we restrict the input graphs to be bipartite.

Theorem 4. MMEI is FPT with respect to m when restricted to bipartite graphs
with unit edge weight and interdiction cost.

Proof. We prove the theorem by showing that, for a bipartite graphG = (X,Y,E),
there is a partial vertex cover S with |S| ≤ k covering at least x edges, if and
only if there is a set I ⊆ E with |I| ≤ |E| − x and ν(G − I) ≤ m = k. Note
that k-PVC on bipartite graphs is solvable in O∗(2k(2k)) time [1], proving the
theorem.

Let S be a size-k partial vertex cover of G and I be the set of edges not
incident to the vertices in S. Then, |I| ≤ |E| − x. Since, all edges in G − I are
incident to vertices in S and each vertex in S must have an incident edge whose
other endpoint is not in S, ν(G − I) ≤ k. This is true because, if each vertex
in S does not have an incident edge whose other endpoint is not in S, then the
cover can be smaller. The reverse direction can be shown in similar way. ⊓⊔

Using both b and m as parameters, we can achieve another FPT result for MMEI.

Theorem 5. MMEI parameterized by both b and m is FPT in graphs with unit
edge weight.

Proof. We show that in the instances with unit weight MMEI with both b and
m as parameters admits a kernel. We apply the following reduction rules:

Reduction Rule 1: If a vertex v has more than b degree-1 neighbors, then keep
b of them and remove other degree-1 neighbors of v.

The correctness of Rule 1 can be shown as follows: Assume that a vertex v
has more than b degree-1 neighbors. Let X be the set of all degree-1 neighbors
of v. It is not possible to remove all edges between v and X with at most b
edge deletions allowed. Then, one of the edges between v and X can be in the
matching. Now, keeping b of them obviously does not omit any optimal solution.

Reduction Rule 2: If U ⊆ V and W ⊆ V with U ∩ W 6= ∅ satisfy: 1) W is
an independent set, 2) N(W ) = U and there are all possible edges between U
and W , and 3) |W | ≥ max{|U |, b + 1}, then keep only max{|U |, b+ 1} vertices
in W and remove the rest.

We prove now the correctness of Rule 2. Let H be the bipartite graph G[U ∪
W ] − E(G[U ]). Notice that we have ν(H) = |U | and there are at least |W |
disjoint matchings in H which saturate U . Now we show that removing any b

7



edges from H does not decrease the cardinality of a maximum matching in G.
This property is obtained by observing that since in H there are at least b + 1
disjoint matchings which saturate U , we have after removing up to b edges in G
there is at least one matching of H which saturate U . We therefore have the
desired property that H is immune to “edge removals”. Hence, removing all but
max{b+ 1, |U |} vertices from |U | still maintains this property.

Rule 2 runs in polynomial time, since W is clearly a module and all modules
of a graph can be found in linear time [11].

Claim. MMEI with both b and m as parameters admits a kernel.

Proof. Let B be the set of edges which form the solution of MMEI and let M
be the maximum matching of the remaining graph. Since the cost of each
edge are positive integers, |B| ≤ b and |M | = m. Moreover, |V (B)| ≤ 2b
and |V (M)| = 2m. As M is the maximum matching in G − B, each edge
in G −B must have at least one endpoint in V (M). Hence, there exist at most
b edges in G which do not have its endpoints in V (M).

Now, we bound the number of edges with its endpoints in V (M). There
are at most 4m2 edges in G[V (M)]. Let X be the set of degree-1 neighbors
of V (M). Rule 1 bounds the number of degree-1 neighbors of each vertex by b;
hence, there are at most 2bm edges between V (M) and X . The number of
edges between V (B) and V (M), is clearly bounded by 4bm. Now, the remaining
edges are between V (M) and Y := V \ (X ∪ V (B) ∪ V (M). We can observe
that the vertices in Y have degree at least two and N(Y ) ⊆ V (M). For each
edge {m1,m2} ∈ M , there exists at most one vertex in Y which is adjacent to
both m1 and m2. We have m edges in M , hence there are at most m vertices
in Y which are adjacent to both endpoints of an edge in M . Next, we bound the
number of vertices in Y , which are adjacent to several edge in M . By Rule 2,
for a size-i subset of vertices I ⊂ V (M) such that no two vertices in I are
connected by an edge in M , there can be at most max{i, b+ 1} vertices y in Y ,
such that N(y) = I. There can be at most

∑

i 2
i ·

(

m
i

)

such subsets I in V (M).

Hence we have at most l =
∑

i 2
i ·
(

m
i

)

·max{i, b+1} + m vertices in Y . Hence,
there are at most lm edges between Y and M . In total we have lm+4bm+4m2

edges which is a function depending only on m and b. Hence we have a kernel
for MMEI with both b and m as parameters. ⊓⊔

Wood [21] proved the NP-hardness of s-t FEI by a reduction from Clique,
which sets the flow amount in the resulting graph r equal to k. This implies
that s-t Flow Edge Interdiction with unit edge cost and the edge capacity being 1
or 2 is W[1]-hard with respect to r. Complementing this result, we achieve the
W-hardness of s-t FEI for parameter b.

Theorem 6. s-t Flow Edge Interdiction is W[1]-hard with respect to b
even with bipartite graphs with unit flow capacity as input.

Proof. We give a parameterized reduction from the W[1]-hard MMEI with b
as parameter. Note that this parametrization remains W[1]-hard on bipartite
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graphs. Let a bipartite graph G = (X,Y,E) be an instance of MMEI. We create
an instance G′ for s-t Flow Edge Interdiction in the following way: Initial-
ize G′ with G such that each edge has unit interdiction cost and flow capacity
and each arc is directed from vertex in X to the one in Y . Add two new vertices s
and t to G. Now, we arcs with interdiction cost b+1 from s to each vertex in X ;
similarly, arcs with interdiction cost b + 1 directed from each vertex in Y to t
are added. Let the set of the arcs added in this way to G be Q and each arc in
Q has unit flow capacity. With this construction we can show that G has a yes
answer to MMEI with b total budget and maximum matching with weight at
most m allowed in the resulting graph iff G′ has yes answer to the s-t FEI with
b total budget and maximum flow allowed in the resulting graph at most r = m.

The key argument is that only the arcs in G′ −Q will belong to an optimal
solution of s-t FEI. Hence, the amount of the s-t flow in the resulting graph is
equivalent to the corresponding matching in G′ −Q. ⊓⊔

4 Partial Problems on Bipartite Graphs

From the proof of Theorem 4, we can already observe some equivalent relation
between edge interdiction problems and partial covering problems. In the follow-
ing, we introduce a new edge interdiction problem and prove its parameterized
complexity by relating it to a partial covering problem.

Minimum Maximal Matching Edge Interdiction (MMMEI)
Input: A simple graph G = (V,E), and an integer interdiction budget b ≥ 0

and an integer r.
Output: Is there a subset I ⊆ E with |I| ≤ b such that λ(G− I) ≤ r ?

The corresponding partial covering problem is the so called Partial Edge
Dominating set (k-PEDS) problem which is defined as follows:

k-Partial Edge Dominating Set (k-PEDS)
Input: A graph G = (V,E) and two positive integers k and x.
Output: Is there a subset S ⊆ E with |S| ≤ k such that at least x edges are

dominated by S?

Lemma 1. k-PEDS with parameter k is W[1]-hard on bipartite graphs.

Proof. We give a parameterized reduction from W[1]-hard k-Independent Set [15]
to k-PEDS. Given a graph G = (V,E) as an instance of k-Independent Set,
we create an instance G′ := (V1, V2, E

′) for k-PEDS in the following way: For
each vertex v ∈ G, we create two vertices v1 and v2 and an edge {v1, v2} in G′. For
each edge {u, v} ∈ G, we create two edges {u1, v2} and {u2, v1} in G′. Moreover,
for every vertex vi ∈ G′, we add n− degG(v) degree-1 neighbors where n = |V |.
Now, we show that k edges in G′ dominate at least 2kn edges iff there exists an
independent set of size k in G.

(⇐) Let S be an independent set of size k in G. For each vertex v ∈ S,
we add the corresponding edge {v1, v2} ∈ E′ to the solution set S′ for k-PEDS
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in G′. Given that S is an independent set, for any pair of vertices u, v in S,
the corresponding edges {u1, u2} ∈ E′ and {v1, v2} ∈ E′ do not dominate any
common edge. Hence, since each edge e ∈ S′ dominates exactly 2n edges, the
set S′ dominates 2kn edges.

(⇒) Now, let S′ be a set of k edges in G′ which dominate 2kn edges. Each
edge in G′ can dominate at most 2n edges; hence, no two edges in S′ share
a dominated edge. This ensures that the shortest distance between every two
edges in S′ is at least two. Now, we present an algorithm to convert a given
solution S′ for PEDS in G′ to a size-k independent set in G. For this purpose,
first we define a conflict cycle. Let S′ be a solution of PEDS in G′ = (V1, V2, E

′)
and let T ⊆ S′. We say that T forms a conflict cycle C in G′ if we can construct
a cycle in G′ containing T and a set U of |T | vertices from G′ − S′ such that in
cycle C, between any two edges from T there exists exactly one vertex from U .
A vertex tj can be in U only if t3−j is contained in S′ for j = {1, 2}.

Assume that there exists no conflict cycle with respect to S′. Then it is easy
to get the size-k independent set corresponding to S′ in G. Construct a graph Y
that represents the connectivity relation of edges in S′: For each edge i ∈ S′,
we create a vertex yi in Y . We create an edge between two vertices yi and yj
in Y iff their corresponding edges i and j are separated by distance exactly 2
in G′. Observe that in the absence of conflict cycles in G′, Y is a tree. Now,
we give a procedure to get S from S′, given Y is a tree. We start in bottom-up
fashion from leaves. Consider a leaf of Y , if {x1, x2} is the edge corresponding to
the leaf, then we add the corresponding vertex x to S. Let {x1, y2} be the edge
corresponding to the leaf and vi be the vertex connecting the leaf to its parent
in T . If vi ∈ V1, we add x to S, else we add y to S. Now, we remove this leave
and proceed iteratively for every leaf. We can observe that, since T is a tree, no
conflict will arise during this procedure. The obtained solution after all vertices
in T are processed is an independent set in G. In the scenario when there exist
conflict cycles in G′, we first prove the following claim:

Claim. If there exist conflict cycles in G′, the corresponding graph Y is a bipar-
tite graph.

Proof. Firstly, we observe that T ⊆ S′ forms a conflict cycle, only if there exists
no edge {x1, x2} in T . If {x1, x2} ∈ T , no vertex vi with i ∈ {1, 2} adjacent
to x1 or x2 can be in U as v(3−i) /∈ V (S′). We can further observe that since G′

is bipartite, in the conflict cycle, the vertices will alternate between V1 and V2.
Moreover, in the cycle, every two consecutive vertices from U will also alternate
between V1 and V2. Now, as the edges in Y are analogous to vertices in U , each
cycle in Y corresponding to a conflict cycle in S′ is of even length. ⊓⊔

For all vertices in T which do not belong to any cycle, we can obtain the
corresponding vertices in S in the bottom up fashion recursively as for the case
that T is tree. Now after all vertices not belonging to any cycles are dealt with,
let the resulting T be T ′, where only even cycles remain. Since T ′ is bipartite,
it is 2-colorable. We color T ′ with two colors, say black and white. If a vertex
in T ′ corresponding to {x1, y2} is black, we add x to S, else y. Since the vertices
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in U alternate between V1 and V2, this resolves all conflicts and gives a valid
independent set S. ⊓⊔

Theorem 7. Minimum Maximal Matching Edge Interdiction is W[1]-
hard with parameter b even on bipartite graphs.

Proof. For a bipartite graph G = (X,Y,E), we show that there is a set S ⊆ E
with |S| = k and dominating x edges, iff there is a set I ⊆ E with |I| = |E| − x
and λ(G − I) = m = k. The theorem then follows from Lemma 1. Let I be the
set of edges not dominated by S, |I| = |E| − x. Clearly, S is the minimum edge
dominating set of G − I. It is well-known that the size of the minimum edge
dominating set of a graph is equal to the size of its minimum independent edge
dominating set. In fact, given a minimum edge dominating set F of G − I we
can construct in polynomial time a minimum independent edge dominating set
of G − I [22]. Moreover, a minimum independent edge dominating set is also a
minimum maximal matching of G − I. Hence, G − I has a minimum maximal
matching of size m. The reverse direction can be shown similarly. ⊓⊔

We can also use the equivalence relation between edge interdiction prob-
lems and partial covering problems to prove hardness results of partial covering
problems.

Corollary 1. [*]1 k-PVC on bipartite graphs is W[1]-hard with respect to the
number of uncovered edges.

Finally, we study another bipartite variant of the Partial vertex Cover
problem, which could be of independent interest. This variant is called (k1, k2)-
Partial Vertex Cover ((k1, k2)-PVC), where given a bipartite graph G =
(X,Y,E) and k1, k2 ∈ N, one asks for a subset S ⊆ V with |S ∩ X | =
k1 and |S ∩ Y | = k2 that maximizes the number of edges in G with at least
one endpoint in S. In contrast to the fixed parameter tractability of k-PVC
on bipartite graphs, we prove that (k1, k2)-PVC is W[1]-hard with respect to k1
and k2. To this end, we prove first a so-called sparsest subgraph problem which is
W-hard and reduce it to (k1, k2)-PVC. This problem is called (k1, k2)-Sparsest
Subgraph ((k1, k2)-SS), where given a bipartite graph G = (X,Y,E) and k1,
k2 ∈ N, one asks for a subset S ⊆ V with |S ∩X | = k1 and |S ∩ Y | = k2 that
minimizes the number of edges in G[S].

Lemma 2. [*] (k1, k2)-SS is W[1]-hard with respect to k1 and k2.

Theorem 8. [*] (k1, k2)-PVC is W[1]-hard with respect to k1 and k2.

5 Outlook

We proved that b-MVE is FPT with b as parameter for the case of edge weights
0 or 1. The case with integer positive weights remains open. Another open ques-
tion is the complexity of MMEI with b and m as parameters and integer edge

1 Due to space limitations, proofs of results marked [*] are given in Appendix
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weights. Moreover, structural parameters like treewidth could be a promising
alternative for parameterizing interdiction problems. Finally, the vertex inter-
diction problems have been studied from the viewpoints of classical complexity
and approximation algorithms, but seem unexplored from the parameterized
complexity perspective.
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A Appendix

A.1 Omitted proof of Corollary 1

Proof. Again, we prove this theorem by establishing an equivalence relation be-
tween MMEI and PVC. For a bipartite graph G = (X,Y,E), we show that there
is a set S ⊆ V with |S| ≤ k and covering |E|−x edges iff there is a set I ⊆ E with
|I| = x and m = ν(G− I) = k. The theorem follows from W-hardness of MMEI
with unit interdiction cost and weight on bipartite graphs with parameter b [23].

Let I be the set of uncovered edges of S. We can observe that since G − I
have a minimum vertex cover of k, from König’s theorem, G− I has a maximum
matching of size at most k. The reverse direction is obvious. ⊓⊔

A.2 Omitted proof for Lemma 2

Proof. We give a parameterized reduction from W[1]-hard k-Clique [15]. Given
an instance G = (V,E) of k-Clique, we create an instance G′ = (X,Y,E′)
of (k1, k2)-SS as follows: For each vertex vi ∈ V , we create a vertex vi in X and
for each edge {vi, vj} ∈ E, we create a vertex vij ∈ Y . For each vertex vk ∈ X ,
we create an edge {vk, vij} ∈ E′ iff k 6= {i, j}. Now, we show that G has a k-
Clique iff there exists a (k1, k2)-SS in G′ which induces at most k1k2 − 2k2
edges where k1 = k and k2 =

(

k

2

)

.
(⇒) Let S ⊆ V be the size-k clique in G. Now, for each vertex vi ∈ S,

we add the corresponding vertex vi ∈ X and the vertices in Y corresponding
to the edges in G[S] to S′. We can observe that exactly k1 = k vertices are
selected from X and k2 =

(

k
2

)

vertices are selected from Y . Moreover, since S
is a clique, G′[S′] is a (k1, k2)-biclique in G′ minus the edges corresponding to
vertex-edge connections in G[S]. There are exactly 2k2 missing edges since G[S]
is a size-k clique. Hence, G′[S′] has k1k2 − 2k2 edges.

(⇐) Let S′ ⊆ V ′ be a {k1, k2}-SS for G′. Moreover, let S′ ∩X = S′
1 and S′ ∩

Y = S′
2. Since there are at most k1k2 − 2k2 edges in G′[S′], G′[S′] is a (k1, k2)-

biclique in G′ with 2k2 edges missing. This means that k2 =
(

k
2

)

edges are
between k1 = k vertices in G, which is possible iff there exists a size-k clique in
G. ⊓⊔

A.3 Omitted proof of Theorem 8

Proof. In Lemma 2, we proved that (k1, k2)-SS is W[1]-hard with respect to k1
and k2. Now, we give parameterized reduction from this problem to (k1, k2)-PVC.
Given an instance G = (X,Y,E) of (k1, k2)-SS with vertex set of size n, we create
an instance G′ = (X ′, Y ′, E′) of (k1, k2)-PVC from G by adding n − degG(v)
degree-1 vertices to each vertex of G. Let L be the set of all degree-1 vertices
added. We need to show that a (k1, k2)-SS for G which induces minimum number
of edges, is equivalent to (k1, k2)-PVC for G′ which covers the maximum number
of edges in G′. We can assume that no degree-1 vertex is part of (k1, k2)-PVC
solution as it is always better to take its neighbor into the solution. Each vertex v
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in X ′ ∪ Y ′ \ L has the same degree n. Hence, it is easy to see that a (k1, k2)-
PVC set induces the minimum number of edges as the induced edges are shared
edges between two vertices of the PVC-set. With this argument we can show
that (k1, k2)-SS for G is equivalent to (k1, k2)-PVC for G′ . ⊓⊔
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