
ar
X

iv
:1

31
2.

24
90

v2
 [

cs
.C

C
]

 2
4

M
ar

 2
01

4

A New View on Worst-Case to Average-Case Reductions for NP

Problems

Thomas Holenstein∗ Robin Künzler†

September 17, 2018

Abstract

We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that under reason-
able assumptions, there is no non-adaptive reduction that bases the average-case hardness of an
NP-problem on the worst-case complexity of an NP-complete problem. We replace the hiding
and the heavy samples protocol in [BT03] by employing the histogram verification protocol of
Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very useful in this context.
Once the histogram is verified, our hiding protocol is directly public-coin, whereas the intuition
behind the original protocol inherently relies on private coins.

∗ETH Zurich, Department of Computer Science, 8092 Zurich, Switzerland. E-mail:
thomas.holenstein@inf.ethz.ch

†ETH Zurich, Department of Computer Science, 8092 Zurich, Switzerland. E-mail: robink@inf.ethz.ch

1

http://arxiv.org/abs/1312.2490v2

Contents

1 Introduction 3
1.1 Contributions of this Paper . 3
1.2 Related Work . 4

2 Preliminaries 6
2.1 Notation . 6
2.2 Concentration Bounds . 7
2.3 Interactive Proofs . 7
2.4 Histograms and the First Wasserstein Distance . 9
2.5 The Parallel Lower Bound and Histogram Verification Protocols 10
2.6 Worst-Case to Average-Case Reductions . 11

3 Technical Overview 12
3.1 The proof of Bogdanov and Trevisan . 12
3.2 Our Proof . 14

4 The New Protocols 16
4.1 Choosing a Random Threshold . 16
4.2 Preliminaries . 16
4.3 The new Heavy Samples Protocol . 17
4.4 The new Hiding Protocol . 17

5 Analysis of the New Heavy Samples Protocol 18
5.1 Proof of Completeness: Overview . 19
5.2 Proof of Soundness: Overview . 19
5.3 Proof of Completeness: the Details . 22
5.4 Proof of Soundness: the Details . 24

6 Analysis of the New Hiding Protocol 26
6.1 Proof of Completeness: Overview . 26
6.2 Proof of Soundness: Overview . 27
6.3 Proof of Completeness: the Details . 30
6.4 Proof of Soundness: the Details . 33

2

1 Introduction

One-way functions are functions that are easy to compute on any instance, and hard to invert on
average. Assuming their existence allows the construction of a wide variety of secure cryptographic
schemes. Unfortunately, it seems we are far from proving that one-way functions indeed exist, as
this would imply BPP 6= NP. Thus, the assumption that NP * BPP, which states that there exists
a worst-case hard problem in NP, is weaker. The following question is natural:

Question 1: Does NP * BPP imply that one-way functions (or other cryptographic
primitives) exist?

A positive answer to this question implies that the security of the aforementioned cryptographic
schemes can be based solely on the worst-case assumption NP * BPP.

Given a one-way function f and an image y, the problem of finding a preimage x ∈ f−1(y) is an
NP-problem: provided a candidate solution x, one can efficiently verify it by checking if f(x) = y.
In this sense, a one-way function provides an NP problem that is hard to solve on average, and
Question 1 asks whether it can be based on worst-case hardness. Thus, the question is closely
related to the study of average-case complexity, and in particular to the set distNP of distributional
problems (L,D), where L ∈ NP, and D is an ensemble of efficiently samplable distributions over
problem instances. We say that a distNP problem (L,D) is hard if there is no efficient algorithm
that solves the problem (with high probability) on instances sampled from D. In this setting,
analogously to Question 1, we ask:

Question 2: Does NP * BPP imply that there exists a hard problem in distNP?

A natural approach to answer Question 2 affirmatively is to give a so-called worst-case to
average-case reduction from some NP-complete L to (L′,D) ∈ distNP: such a reduction RO is a
polynomial time algorithm with black-box access to an oracle O that solves (L′,D) on average, such
that PrR[R

O(x) = L(x)] ≥ 2/3. We say a reduction is non-adaptive if the algorithm R fixes all
its queries to O in the beginning (see Section 2.6 for a formal definition). Bogdanov and Trevisan
[BT06b] (building on work by Feigenbaum and Fortnow [FF93]) show that it is unlikely that a
non-adaptive worst-to-average-case reduction exists:

Main result of [BT06b] (informal): If there exists a non-adaptive worst-case to
average-case reduction from an NP-complete problem to a problem in distNP, then
NP ⊆ coNP/poly.

The consequence NP ⊆ coNP/poly implies a collapse of the polynomial hierarchy to the third level
[Yap83], which is believed to be unlikely.

The work of Impagliazzo and Levin [IL90] and Ben-David et al. [BDCGL92] shows that an
algorithm that solves a problem in distNP can be turned (via a non-adaptive reduction) into an
algorithm that solves the search version of the same problem. Thus, as inverting a one-way function
well on average corresponds to solving a distNP search problem well on average, the result of [BT06b]
also implies that Question 1 cannot be answered positively by employing non-adaptive reductions,
unless the polynomial hierarchy collapses.

1.1 Contributions of this Paper

The proof of the main result in [BT06b] proceeds as follows. Assuming that there exists a non-
adaptive worst-case to average-case reduction R from an NP-complete language L to (L′,D) ∈
distNP, it is shown that L and its complement both have a constant-round interactive proof with

3

advice (i.e. L and L are in AM/poly according to Definition 2.3). As AM/poly = NP/poly, this
gives coNP ⊆ NP/poly. The final AM/poly protocol consists of three sub-protocols: the heavy
samples protocol, the hiding protocol, and the simulation protocol. Using the protocol to verify the
histogram of a probability distribution by Haitner et al. [HMX10], we replace the heavy samples
protocol and the hiding protocol. Our protocols have several advantages. The heavy samples
protocol becomes quite simple, as one only needs to read a probability from the verified histogram.
Furthermore, once the histogram is verified, our hiding protocol is directly public-coin, whereas the
intuition behind the original hiding protocol crucially uses that the verifier can hide its randomness
from the prover. Our protocol is based on a new and different intuition and achieves the same
goal. Clearly, one can obtain a public-coin version of the original hiding protocol by applying the
Goldwasser-Sipser transformation [GS86], but this might not provide a different intuition. Finally,
our protocols show that the histogram verification protocol of [HMX10] is a very useful primitive
to approximate probabilities using AM-protocols.

1.2 Related Work

Recall that our Question 2 above asked if average-case hardness can be based on the worst-case
hardness of an NP-complete problem. The question if cryptographic primitives can be based on
NP-hardness was stated as Question 1.

Average-case complexity. We use the definition of distNP and average-case hardness from [BT06b].
The hardness definition is essentially equivalent to Impagliazzo’s notion of heuristic polynomial-
time algorithms [Imp95]. We refer to the surveys of Impagliazzo [Imp95], Goldreich [Gol97], and
Bogdanov and Trevisan [BT06a] on average-case complexity.

Negative results on Question 2. Feigenbaum and Fortnow [FF93] study a special case of worst-case
to average-case reductions, called random self-reductions. Such a reduction is non-adaptive, and
reduces L to itself, such that the queries are distributed uniformly at random (but not necessarily
independently). They showed that the existence of a random self-reduction for an NP-complete
problem is unlikely, as it implies coNP ⊆ NP/poly and the polynomial hierarchy collapses to
the third level. This result generalizes to the case of non-adaptive reductions from L ∈ NP to
L′ ∈ distNP where the queries are distributed according to a distribution P that does not depend
on the input x to the reduction, but only on the length of x.

The study of random self-reductions was motivated by their use to design interactive proof
systems and (program-) checkers1. Checkers are introduced by Blum and Blum and Kannan
[Blu88, BK95]. Rubinfeld [Rub90] shows that problems that have a random self-reduction and
are downward self-reducible (i.e. they can be reduced to solving the same problem on smaller in-
stances) have a program checker. Random self-reductions can be used to prove the worst-case
to average-case equivalence of certain PSPACE-complete and EXP-complete problems [STV01]. A
long-standing open question is whether SAT is checkable. In this context, Mahmoody and Xiao
[MX10] show that if one-way functions can be based on NP-hardness via a randomized, possibly
adaptive reduction, then SAT is checkable.

In the context of program checking, Blum et al. [BLR93] introduce the notion of self-correctors.
A self-corrector is simply a worst-case to average-case reduction from L to (L′,D), where L = L′.
Clearly, a random self-reduction is also a self-corrector.

1 Checkers allow to ensure the correctness of a given program on an input-by-input basis. Formally, a checker is
an efficient algorithm C that, given oracle access to a program P which is supposed to decide a language L, has the
following properties for any instance x. Correctness: If P is always correct, then CP (x) = L(x) with high probability.
Soundness: CP (x) ∈ {L(x),⊥} with high probability.

4

As discussed earlier, based on [FF93], Bogdanov and Trevisan [BT06b] show that the average-
case hardness of a problem in distNP cannot be based on the worst-case hardness of an NP-complete
problem via non-adaptive reductions (unless the polynomial hierarchy collapses). In particular,
this implies that SAT does not have a non-adaptive self-corrector (unless the polynomial hierarchy
collapses). It is an important open question if the same or a similar result can be proved for
adaptive reductions.

Watson [Wat12] shows that there exists an oracle O such that there is no worst-case to average-
case reduction for NP relative to O. Impagliazzo [Imp11] then gives the following more general
result: any proof that gives a positive answer to Question 2 must use non-relativizing techniques.
More precisely, it is shown that there exists an oracle O such that NPO * BPPO, and there is
no hard problem in distNPO. Note that this does not rule out the existence of a worst-case to
average-case reduction, as such reductions do not necessarily relativize. In particular, the result
of Bogdanov and Trevisan [BT06b] also applies to reductions that are non-adaptive and do not
relativize: there is no such reduction, unless the polynomial hierarchy collapses.

Negative results on Question 1. This question goes back to the work of Diffie and Hellman [DH76].
Even and Yacobi [EY80] give a cryptosystem that is NP-hard to break. However, their notion of
security requires that the adversary can break the system in the worst-case (i.e. for every key).
Their cryptosystem can in fact be broken on most keys, as shown by Lempel [Lem79]. It is now
understood that breaking a cryptosystem should be hard on average, which is, for example, reflected
in the definition of one-way functions.

Brassard [Bra83] shows that public-key encryption cannot be based on NP-hardness in the
following sense: under certain assumptions on the scheme, if breaking the encryption can be reduced
to deciding L, then L ∈ NP ∩ coNP. In particular, if L is NP-hard this implies that NP = coNP.
Goldreich and Goldwasser [GG98] show the same result under relaxed assumptions.

To give a positive answer to Question 1, one can aim for a reduction from an NP-complete
problem to inverting a one-way function well on average (see for example [AGGM06] for a formal
definition). As discussed earlier, the work of Impagliazzo and Levin [IL90] and Ben-David et
al. [BDCGL92] allows to translate the results of [FF93] and [BT06b] to this setting. That is, there
is no non-adaptive reduction from an NP-complete problem L to inverting a one-way function,
unless the polynomial hierarchy collapses to the third level. Akavia et al. [AGGM06] directly use
the additional structure of the one-way function to prove that the same assumption allows the
stronger conclusion coNP ⊆ AM, which implies a collapse of the polynomial hierarchy to the second
level.

Haitner et al. [HMX10] show that if constant-round statistically hiding commitment can be
based on an NP-complete problem via O(1)-adaptive reductions (i.e. the reduction makes a constant
number of query rounds), then coNP ⊆ AM, and the polynomial hierarchy collapses to the second
level. In fact, they obtain the same conclusion for any cryptographic primitive that can be broken
by a constant-depth collision finding oracle (such as variants of collision resistant hash functions
and oblivious transfer). They also obtain non-trivial, but weaker consequences for poly(n)-adaptive
reductions.

Bogdanov and Lee [BL13] explore the plausibility of basing homomorphic encryption on NP-
hardness. They show that if there is a (randomized, adaptive) reduction from some L to breaking
a homomorphic bit encryption scheme (that supports the evaluation of any sufficiently “sensitive”
collection of functions), then L ∈ AM ∩ coAM. In particular, if L is NP-complete this implies a
collapse of the polynomial hierarchy to the second level.

Positive results. We only know few problems in distNP that have worst-case to average-case re-

5

ductions where the worst-case problem is believed to be hard. Most such problems are based on
lattices, and the most important two are the short integer solution problem (SIS), and the learning
with errors problem (LWE).

The SIS problem goes back to the breakthrough work of Ajtai [Ajt96]. He gives a reduction from
an approximate worst-case version of the shortest vector problem to an average-case version of the
same problem, and his results were subsequently improved [Mic04, MR07]. Many cryptographic
primitives, such as one-way functions, collision-resistant hash functions, identification schemes,
and digital signatures have been based on the SIS problem, and we refer to [BLP+13] for an
overview. He gives a reduction from an approximate worst-case version of the shortest vector
problem to an average-case version of the same problem, and his results were subsequently improved
[Mic04, MR07]. Many cryptographic primitives, such as one-way functions, collision-resistant hash
functions, identification schemes, and digital signatures have been based on the SIS problem, and
we refer to [BLP+13] for an overview. He gives a reduction from an approximate worst-case version
of the shortest vector problem to an average-case version of the same problem, and his results were
subsequently improved [Mic04, MR07]. Many cryptographic primitives, such as one-way functions,
collision-resistant hash functions, identification schemes, and digital signatures have been based on
the SIS problem, and we refer to [BLP+13] for an overview.

Regev [Reg09] gives a worst- to average-case reduction for the LWE problem in the quantum
setting. That is, an algorithm for solving LWE implies the existence of a quantum algorithm to solve
the lattice problem. The work of Peikert [Pei09] and Lyubashevsky and Micciancio [LM09] makes
progress towards getting a reduction that yields a classical worst-case algorithm. The first classical
hardness reduction for LWE (with polynomial modulus) is then given by Brakerski et al. [BLP+13].
A large number of cryptographic schemes are based on LWE, and we refer to Regev’s survey [Reg10],
and to [BLP+13] for an overview.

Unfortunately, for all lattice-based worst-case to average-case reductions, the worst-case problem
one reduces to is contained in NP ∩ coNP, and thus unlikely to be NP-hard. We note that several
of these reductions (such as the ones of [Ajt96, Mic04, MR07]) are adaptive.

Gutfreund et al. [GSTS07] make progress towards a positive answer to Question 2: they give a
worst-case to average-case reduction for NP, but sampling an input from the distribution they give
requires quasi-polynomial time. Furthermore, for any fixed BPP algorithm that tries to decide SAT,
they give a distribution that is hard for that specific algorithm. Note that this latter statement
does not give a polynomial time samplable distribution that is hard for any algorithm. Unlike in
[FF93, BT06b], where the reductions under consideration get black-box access to the average-case
oracle, the reduction given by [GSTS07] is not black-box, i.e. it requires access to the code of an
efficient average-case algorithm. Such reductions (even non-adaptive ones) are not ruled out by the
results of [FF93, BT06b]. Gutfreund and Ta-Shma [GTS07] show that even though the techniques
of [GSTS07] do not yield an average-case hard problem in distNP, they bypass the negative results
of [BT06b]. Furthermore, under a certain derandomization assumption for BPP, they give a worst-
case to average-case reduction from NP to an average-case hard problem in NTIME(nO(logn)).

2 Preliminaries

2.1 Notation

We denote sets using calligraphic letters A,B, . . ., and we write capital letters A,B, . . . to denote
random variables. For a set S, we use x ← S to denote that x is chosen uniformly from S. We
denote probability distributions on bitstrings by P, and write x ← P if x is chosen from P. Also,
we let P(x) := Pry←P[x = y]. For n ∈ N we let (n) := {0, 1, . . . , n} and [n] := {1, 2, . . . , n}.

6

2.2 Concentration Bounds

We use several concentration bounds and first state the well-known Chernoff bound.

Lemma 2.1 (Chernoff bound). Let X1, . . . ,Xk be independent random variables where for all i we
have Xi ∈ {0, 1} and Pr[Xi = 1] = p for some p ∈ (0, 1). Define X̃ := 1

k

∑
i∈[k]Xi. Then for any

ε > 0 it holds that

Pr
X1,...,Xk

[
X̃ ≥ p+ ε

]
< exp

(
−ε2k

2

)
, Pr

X1,...,Xk

[
X̃ ≤ p− ε

]
< exp

(
−ε2k

2

)
.

Hoeffding’s bound [Hoe63] states that for k independent random variables X1, . . . ,Xk that take
values in some appropriate range, with high probability their sum is close to its expectation.

Lemma 2.2 (Hoeffding’s inequality). Let X1, . . . ,Xk be independent random variables with Xi ∈
[a, b], define X̃ := 1

k

∑
i∈[k]Xi and let p = EX1,...,Xk

[X̃]. Then for any ε > 0 we have

Pr
X1,...,Xk

[
X̃ ≥ p+ ε

]
≤ exp

(
− 2ε2k

(b− a)2

)
,

Pr
X1,...,Xk

[
X̃ ≤ p− ε

]
≤ exp

(
− 2ε2k

(b− a)2

)
.

2.3 Interactive Proofs

In an interactive proof, an all-powerful prover tries to convince a computationally bounded verifier
that her claim is true. The notion of an interactive protocol formalizes the interaction between the
prover and the verifier, and is defined as follows.

Definition 2.3 (Interactive Protocol). Let n ∈ N, V : {0, 1}∗×{0, 1}∗ → {0, 1}∗ ∪{accept, reject},
P : {0, 1}∗ → {0, 1}∗, and k, ℓ,m : N → N. A k-round interactive protocol (V, P) with message
length m and ℓ random coins between V and P on input x ∈ {0, 1}n is defined as follows:

1. Uniformly choose random coins r ∈ {0, 1}ℓ(n) for V .

2. Let k := k(n) and repeat the following for i = 0, 1, . . . , k − 1:

a) mi := V (x, i, r, a0, . . . , ai−1),mi ∈ {0, 1}m(n)

b) ai := P (x, i,m0, . . . ,mi), ai ∈ {0, 1}m(n)

Finally, we have V (x, k, r,m0, a0, . . . ,mk−1, ak−1) ∈ {accept, reject}.

We denote by (V (r), P)(x) ∈ {accept, reject} the output of V on random coins r after an interaction
with P . We say that (x, r,m0, a0, . . . ,mj , aj) is consistent for V if for all i ∈ (k − 1) we have
V (x, i, r, a0, . . . , ai−1) = mi. Finally, if (x, r,m0, a0, . . . ,mk−1, ak−1) is not consistent for V , then
V (x, k, r,m0, a0, . . . ,mk−1, ak−1) = reject. ♦

We now define the classes IP and AM of interactive proofs. The definition of IP was initially given
by Goldwasser, Micali, and Rackoff [GMR89], and the definition of AM goes back to Babai [Bab85].

7

Definition 2.4 (IP, AM, and AM/poly). The set

IP




rounds = k(n)
time = t(n)
msg size = m(n)
coins = ℓ(n)
compl ≥ c(n)
sound ≤ s(n)




contains the languages L that admit a k-round interactive protocol (V, P) with message length m
and ℓ random coins, and the following properties:

Efficiency: V can be computed by an algorithm such that for any x ∈ {0, 1}∗ and P ∗ the
total running time of V in (V, P ∗)(x) is at most t(|x|).
Completeness:

x ∈ L =⇒ Pr
r←{0,1}ℓ(|x|)

[(V (r), P)(x) = accept] ≥ c(|x|).

Soundness: For any P ∗ we have

x /∈ L =⇒ Pr
r←{0,1}ℓ(|x|)

[(V (r), P ∗)(x) = accept] ≤ s(|x|).

The set AM is defined analogously, with the additional restriction that (V, P) is public-coin, i.e. for
all i, mi is an independent uniform random string. We sometimes omit the msg size and coins

parameters from the notation, in which case they are defined to be at most time. If we omit the
time parameter, it is defined to be poly(n). We then let

IP := IP




rounds = poly(n)
compl ≥ 2/3
sound ≤ 1/3


 , AM := AM




rounds = 1
compl ≥ 2/3
sound ≤ 1/3




The set AM/poly is defined like AM, but the verifier is additionally allowed to use poly(n) bits of
non-uniform advice.2 ♦

Instead of writing (for example) L ∈ AM(rounds = k, time = t, compl ≥ c, sound ≤ s), we
sometimes say that L has a k-round public-coin interactive proof with completeness c and soundness
s, where the verifier runs in time t.

Babai and Moran [BM88] showed that in the definition of AM above, setting rounds = k for any
constant k ≥ 1 yields the same class. The same is true for AM/poly, and it thus suffices to give a
k-round protocol with advice for some constant k to place a language in AM/poly.

Assuming deterministic provers. For proving the soundness condition of an interactive proof,
without loss of generalty we may assume that the prover is determinsitic: we consider the deter-
ministic prover that always sends the answer which maximizes the verifier’s acceptance probability.
No probabilistic prover can achieve better acceptance probability.

2 For a definition of turing machines with advice we refer, for example, to Arora and Barak’s book [AB09],
Chapter 6.3.

8

Interactive proofs for promise problems. Promise problems generalize the notion of lan-
guages, and are defined as follows: a promise problem Π = (ΠY ,ΠN) is a pair of sets ΠY ,ΠN ⊆
{0, 1}∗ such that ΠY ∩ΠN = ∅. Given a problem Π, we are interested in algorithms (or protocols)
that accept instances in ΠY and reject instances in ΠN . In particular, we don’t care about the
algorithm’s behavior on instances that are not in ΠY ∪ΠN .

Promise versions of the classes IP,AM, and AM/poly are defined in the obvious way by restricting
the completeness condition to x ∈ ΠY and the soundness condition to x ∈ ΠN .

2.4 Histograms and the First Wasserstein Distance

We give the definitions of histograms and Wasserstein distance as given in [HMX10]. The histogram
of a probability distribution P is a function h : [0, 1] → [0, 1] such that h(p) = Prx←P[P(x) = p].
The following definition describes a discretized version of this concept.

Definition 2.5 ((ε, t)-histogram). Let P be a probability distribution on {0, 1}n, fix t ∈ N, and let
ε > 0. For i ∈ (t) we define the i’th interval Ai and the i’th bucket Bi as

Ai :=
(
2−(i+1)ε, 2−iε

]
, Bi := {x : P(x) ∈ Ai} .

We then let h := (h0, . . . , ht) where hi := Prx←P[x ∈ Bi] =
∑

x∈Bi P(x). The tuple h is called the
(ε, t)-histogram of P. ♦

If for all x we have either P(x) = 0 or P(x) ≥ 2−n, and we consider the (ε, t)-histogram of P for t =
⌈n/ε⌉, then ⋃

i∈(t) Bi = {0, 1}n and
∑

i∈(t) hi = 1. If smaller probabilities occur (e.g. P(x) = 2−2n

for some x), this sum is smaller than 1.
The following observation follows directly from the above definition:

Claim 2.6. For all i ∈ (t) we have hi2
iε ≤ |Bi| ≤ hi2

(i+1)ε.

Proof. Recall that hi =
∑

x∈Bi P(x) and by definition of Bi we have

|Bi|2−(i+1)ε =
∑

x∈Bi
2−(i+1)ε ≤

∑

x∈Bi
P(x) ≤

∑

x∈Bi
2−iε = |Bi|2−iε.

We next introduce the Wasserstein distance between histograms. Intuitively, it measures how
much work it takes to turn one histogram into another one, where the work is defined as the mass
that is moved times the distance over which it is moved. We will only apply the Wasserstein
distance to histograms h where

∑
i∈(t) hi = 1, and we call such tuples distribution vectors.

Definition 2.7 (1st Wasserstein distance over arrays). Given two distribution vectors x and y over
(t) we let ai =

∑
j∈(i) xj and bi =

∑
j∈(i) yj. We let

−→
W1(x, y) :=

1

t

∑

i∈(t):ai>bi

(ai − bi),
←−
W1(x, y) :=

1

t

∑

i∈(t):bi>ai

(bi − ai),

and W1(x, y) :=
−→
W1(x, y) +

←−
W1(x, y). W1(x, y) is called the 1st Wasserstein distance between x

and y.
−→
W1(x, y) and

←−
W1(x, y) are called the right and left Wasserstein distance, respectively. ♦

In more general settings, this distance is also called Kantorovich distance, or Earth Mover’s distance.
For a more detailed discussion of this concept and the associated intuition we refer to the nice
exposition in [HMX10].

9

2.5 The Parallel Lower Bound and Histogram Verification Protocols

To formalize the guarantees of the two protocols, we use the notion of promise problems as intro-
duced in Section 2.3.

The lower bound protocol. We describe the promise problem that is solved by the parallel
lower bound protocol as stated in [BT06b] (Corollary 7), which is based on the lower bound protocol
of [GS86]. The goal is to prove approximate lower bounds on the size of a set S which is specified
using a circuit C as S := C−1(1) = {x : C(x) = 1}. More generally, the following lemma states
that there is a protocol that allows to prove lower bounds in parallel for several sets Si = C−1(yi) =
{x : C(x) = yi} for some given bit strings yi. In the following, for a circuit C we denote its size by
Size(C).

Lemma 2.8 (Parallel Lower Bound Protocol, [BT06b]). For circuits C : {0, 1}n → {0, 1}m, ε ∈
(0, 1) we define the promise problem ΠLB as

ΠLB
Y :=

{
(C, ε, y1, s1, . . . , yk, sk) : ∀i ∈ [k] : |C−1(yi)| ≥ si

}

ΠLB
N :=

{
(C, ε, y1, s1, . . . , yk, sk) : ∃i ∈ [k] : |C−1(yi)| ≤ (1 − ε)si

}

There exists a constant-round public-coin interactive proof for ΠLB with completeness 1 − ε and
soundness ε, where the verifier runs in time poly(Size(C)k

ε).

We briefly sketch how such lower bounds can be proved, but refer to [BT06b] for a detailed
exposition and a proof of the above lemma. Consider the case k = 1, suppose the input (C, ε, s) is
given, and we would like to give a protocol such that the verifier accepts with high probability if
|C−1(1)| ≥ s and rejects with high probability if |C−1(1)| ≤ (1 − ε)s. The protocol can be based
on the hash mixing lemma:

Lemma 2.9 (Hash Mixing Lemma, [Nis92]). Let B ⊆ {0, 1}n, x ∈ {0, 1}n. If H(n,m) is a family
of 2-wise independent hash functions mapping n bits to m bits, then the following holds. For all
γ > 0 we have

Pr
h←H(n,m)

[
|{y ∈ B : h(y) = 0m}| /∈ (1± γ)

|B|
2m

]
≤

{
2m

γ2|B| if |B| > 0

0 if |B| = 0.

The idea is to let the verifier choose a pairwise independent hash function with an appropriate
range, such that for the set B := C−1(1) in case |B| ≥ s, with high probability the set M := {x :
x ∈ B ∧ f(x) = 0} has size at least some fixed polynomial p(n). One chooses the parameters such
that in case |B| ≤ (1−ε)s, we have |M| < p(n) with high probability. Then, the prover is supposed
to send p(n) many elements x1, . . . , xp to the verifier that satisfy C(xi) = 1 and f(xi) = 0. Finally,
the verifier checks that the prover sent p(n) many elements with these properties. It is not hard to
see completeness and soundness, and Lemma 2.8 can be proved for the parallel repetition of this
protocol.

Verifying histograms. We consider circuits C : {0, 1}n → {0, 1}m, and the distribution PC

defined by PC(y) = Prr←{0,1}n [C(r) = y]. The VerifyHist protocol of [HMX10] (Lemma 4.4) allows

to verify that some given histogram h is close to the histogram of PC in terms of the Wasserstein
distance.

10

Lemma 2.10 (VerifyHist Protocol, [HMX10]). For a circuit C : {0, 1}n → {0, 1}m, ε ∈ (0, 1), and
t = ⌈n/ε⌉, we denote by hC ∈ [0, 1]t+1 the (ε, t)-histogram of PC . We define the promise problem
ΠVerifyHist as

ΠVerifyHist
Y :=

{
(C, ε, h) : h = hC

}

ΠVerifyHist
N :=

{
(C, ε, h) : W1(hC , h) > 20/t

}

There exists a constant-round public-coin interactive proof for ΠVerifyHist with completeness 1−2−n

and soundness 2−n, where the verifier runs in time poly(Size(C)
ε).

We remark that W1(hC , h) is well-defined: for all y we have PC(y) = 0 or PC(y) ≥ 2−n, and
thus by choice of t, hC is a distribution vector.

We give a brief and intuitive description of the VerifyHist protocol, but refer to [HMX10] for a
formal treatment and a proof of the above lemma. For a circuit C and a claimed histogram h the
protocol proceeds as follows.

The first part of the protocol is called preimage test : the verifier samples elements y1, . . . , yk
(for some appropriate k) from the distribution PC and sends them to the prover. The honest prover
sends back the probabilities PC(yi), and proves a lower bound on them using the parallel lower
bound protocol of Lemma 2.8. Finally, the verifier considers the histogram h′ induced by the values
PC(yi) and accepts if and only if W1(h, h′) is small.

In the second part, a so-called image test is performed: let Wi := {y : PC(y) ≥ 2−iε}, and
let wh

i be the estimates of Wi given by the claimed histogram h. Using the parallel lower bound
protocol, the prover proves that indeed |Wi| ≥ wh

i for all i.
Intuitively, the preimage test prevents the prover from claiming that many probabilities are

larger than they actually are, and it can be shown that the image test rejects in case the probabilities
are larger than claimed. Haitner et al. [HMX10] prove that indeed, if both tests accept, then h is
close to hC in the first Wasserstein distance.

2.6 Worst-Case to Average-Case Reductions

We give a definition of non-adaptive worst-case to average-case reductions. Informally, such a
reduction is a polynomial time algorithm that, given an oracle which solves some given problem
on average, solves some other problem in the worst case. The reduction is called non-adaptive if it
generates all its oracle queries before calling the oracle. The definition we give is from [BT06b].

A distributional problem is a pair (L,D), where L is a language and D is a set D = {Pn}n∈N,
and for each n, Pn is a distribution over {0, 1}n.

Definition 2.11. A non-adaptive δ-worst-to-average reduction from L to a distributional problem
(L′,D) is a family of polynomial size circuits {Rn}n∈N such that for any n the following holds:

• Rn takes as input some x ∈ {0, 1}n and randomness r, and outputs (y1, . . . , yk) (called
queries), and a circuit C.

• For any x ∈ {0, 1}n, and any oracle O for which Prx←Pn,O[O(x) 6= L′(x)] ≤ δ(n) we have

Pr
r,(y1,...,yk,C):=Rn(x,r)

[C(O(y1), . . . , O(yk)) = L(x)] ≥ 2/3.

♦

11

We may assume that the queries y1, . . . , yk are identically (but not necessarily independently)
distributed. If this is not the case for the original reduction R, we can easily obtain a reduction
R′ that satisfies this property: R′ obtains the queries of R and outputs a random permutation of
them (the circuit C is also modified accordingly).

Furthermore, the constant 2/3 can be replaced by 1/2+1/nc for some constant c: by the usual
repetition argument, executing the reduction a polynomial number of times and outputting the
majority answer still yields an exponentially small error probability.

3 Technical Overview

For a formal definition of non-adaptive worst-case to average-case reductions, we refer to Section 2.6
in the preliminaries. In the introduction we stated an informal version of the result of [BT06b].
We now state their main theorem formally. Let U be the set {Pn}n∈N where Pn is the uniform
distribution on {0, 1}n.
Theorem 3.1 (Main Theorem of [BT06b]). For any L and L′ and every constant c the following
holds. If L is NP-hard, L′ ∈ NP, and there exists a non-adaptive 1/nc-worst-to-average reduction
from L to (L′,U), then coNP ⊆ NP/poly.

As discussed earlier, the conclusion implies a collapse of the polynomial hierarchy to the third
level.

The theorem is stated for the set of uniform distributions U . Using the results of Ben-David
et al. [BDCGL92] and Impagliazzo and Levin [IL90], the theorem can be shown to hold for any
polynomial time samplable set of distributions D. This is nicely explained in [BT06b] (Section 5).

We first give an overview of the original proof, and then describe how our new protocols fit in.

3.1 The proof of Bogdanov and Trevisan

Suppose R reduces the NP-complete language L to (L′,U) ∈ distNP. The goal is to give a (constant-
round) AM/poly protocol for L and its complement. As NP/poly = AM/poly, this will give the
result. The idea is to simulate an execution of the reduction R on input x with the help of the
prover. The verifier then uses the output of R as its guess for L(x). R takes as input the instance
x, randomness r ∈ {0, 1}n, and produces (non-adaptively) queries y1, . . . , yk ∈ {0, 1}m for the
average-case oracle. The reduction is guaranteed to guess L(x) correctly with high probability,
provided the oracle answers are correct with high probability. As mentioned in Section 2.6, we may
assume that the queries y1, . . . , yk are identically (but not necessarily independently) distributed.
We denote the resulting distribution of individual queries by PR,x, i.e. PR,x(y) = Prr[R(x, r) = y]
(where R(x, r) simply outputs the first query of the reduction on randomness r).

Handling uniform queries: the Feigenbaum-Fortnow protocol. The proof of [BT06b]
relies on the following protocol by Feigenbaum and Fortnow [FF93]. The protocol assumes that the
queries are uniformly distributed, i.e. PR,x(y) = 2−m for all y. The advice for the AM/poly protocol
is gUY = Pry←{0,1}m [y ∈ L′], i.e. the probability of a uniform sample being a yes-instance. The
protocol proceeds as follows. First, the verifier chooses random strings r1, . . . , rℓ and sends them to
the prover. The honest prover defines (yi1, . . . , yik) := R(x, ri) for all i, and indicates to the verifier
which yij are in L′ (we call them yes-instances), and provides the corresponding NP-witnesses. The
verifier checks the witnesses, expects to see approximately a gUY fraction of yes-answers, and rejects
if this is not the case. The verifier then chooses a random i and outputs R(x, ri, yi1, . . . , yik) as its
guess for L(x).

12

To see completeness, one uses a concentration bound to show that the fraction of yes-answers
sent by the prover is approximately correct with high probability (one must be careful at this point,
because the outputs of the reduction for a fixed ri are not independent). Finally, the reduction
decides L(x) correctly with high probability.

To argue that the protocol is sound, we note that the prover cannot increase the number of
yes-answers at all, as it must provide correct witnesses. Furthermore, the prover cannot decrease
the number of yes-answers too much, as the verifier wants to see approximately a gUY fraction.
This gives that most answers provided by the prover are correct, and thus with high probability
the reduction gets good oracle answers, in which case it outputs 0 with high probability.

We note that the Feigenbaum-Fortnow simulation protocol is public-coin.

The case of smooth distributions: the Hiding Protocol. Bogdanov and Trevisan [BT06b]
generalize the above protocol so that it works for distributions that are α-smooth, i.e. where
PR,x(y) ≤ α2−m for all y and some threshold parameter α = poly(n) (we say all samples are
α-light). If the verifier knew the probability gY := Pry←PR,x [y ∈ L′], it is easy to see that the
Feigenbaum-Fortnow protocol (using gY instead of gUY as above) can be used to simulate the re-
duction. Unfortunately, gY cannot be handed to the verifier as advice, as it may depend on the
instance x. Thus, [BT06b] give a protocol, named the Hiding Protocol, that allows the verifier to
obtain an approximation of gY, given gUY as advice.

The idea of the protocol is as follows: the verifier hides a 1/α-fraction of samples from PR,x

among uniform random samples (i.e. it permutes all samples randomly). The honest prover again
indicates the yes-instances and provides witnesses for them. The verifier checks the witnesses and
that the fraction of yes-answers among the uniform samples is approximately gUY. If this is true,
it uses the fraction of yes-answers among the samples from PR,x as an approximation of gY.

Completeness follows easily. The intuition to see soundness is that since the distribution is
α-smooth, and as the verifier hides only a 1/α fraction of PR,x samples among the uniform ones,
the prover cannot distinguish them.

We note that the intuition behind this protocol crucially relies on the fact that the verifier can
keep some of its random coins private: the prover is not allowed to know where the distribution
samples are hidden.

General distributions and the Heavy Samples Protocol. Finally, [BT06b] remove the
restriction that PR,x is α-smooth as follows. We say y is α-heavy if PR,x(y) ≥ α2−m, and let
gH := Pry←PR,x [PR,x(y) ≥ α2−m] be the probability of a distribution sample being heavy, and

gYL := Pry←PR,x [y ∈ L′ ∧ PR,x(y) < α2−m] the probability of a distribution sample being a yes-
instance and light.

We first note that if the verifier knows (an approximation of) both gH and gYL, it can use the
Feigenbaum-Fortnow approach to simulate the reduction: the verifier simply uses gYL instead of
gUY in the protocol, and ignores the heavy samples. It can do this by having the prover indicate the
α-heavy instances, and checking that their fraction is close to gH. Using the lower bound protocol
of Goldwasser and Sipser [GS86] (see Section 2.5), the prover must prove that these samples are
indeed heavy. Finally, for the heavy samples the verifier can simply set the oracle answers to 0:
this changes the oracle answers on at most a polynomially small (i.e. a 1/α) fraction of the inputs,
as by definition at most a 1/α fraction of the y’s can be α-heavy. Completeness is not hard to see,
and soundness follows because a cheating prover cannot claim light samples to be heavy (by the
soundness of the lower bound protocol), and thus, by the verifier’s check, cannot lie much about
which samples are heavy.

13

If the verifier knows (an approximation of) gH, then it can use the hiding protocol to approximate
gYL: the verifier simply ignores the heavy samples. This is again done by having the prover
additionally tell which samples are α-heavy (and prove this fact using the lower bound protocol).
The verifier additionally checks that the fraction of heavy samples among the distribution samples
is approximately gH, and finally uses the fraction of light distribution samples as approximation
for gYL.

It only remains to approximate gH. This is done using the Heavy Samples Protocol as follows:
the verifier samples y1, . . . , yk from PR,x by choosing random r1, . . . , rk and letting yi := R(x, ri).
It sends the yi to the prover. The honest prover indicates which of them are heavy, and proves to
the verifier using the lower bound protocol of [GS86] that the heavy samples are indeed heavy and
using the upper bound protocol of Aiello and H̊astad [AH91] that the light samples are indeed light.
The verifier then uses the fraction of heavy samples as its approximation for gH. It is intuitive that
this protocol is complete and sound. The upper bound protocol requires that the verifier knows a
uniform random element (which is unknown to the prover) in the set on which the upper bound is
proved. In our case, the verifier indeed knows the value ri, which satisfies this condition.

We note that this protocol relies on private-coins, as the verifier must keep the ri secret for the
upper bound proofs.

3.2 Our Proof

We give two new protocols to approximate the probabilities gH and gYL, as defined in the previous
section. These protocols can be used to replace the Hiding Protocol and the Heavy Samples Protocol
of [BT06b], respectively. Together with the Feigenbaum-Fortnow based simulation protocol of
[BT06b], this then yields a different proof of coNP ⊆ AM/poly under the given assumptions.

Verifying histograms. We are going to employ the VerifyHist protocol by Haitner et al. [HMX10]
to verify the histogram of a probability distribution. Recall that the (ε, t)-histogram h = (h0, . . . , ht)
of a distribution P is defined by letting hi := Pry←P[y ∈ Bi], where Bi :=

{
x : P(x) ∈ (2−(i+1)ε, 2−iε]

}

(See Definition 2.5). We will use the VerifyHist protocol for the distribution PR,x, as defined by
the reduction R(x, ·) under consideration, i.e. PR,x(y) = Prr[R(x, r) = y]. Intuitively, this protocol
allows to prove that some given histogram h is close to the true histogram of PR,x in terms of the
1st Wasserstein distance (also known as Earth Mover’s distance). This distance between h and
h′ measures the minimal amount of work that is needed to push the configuration of earth given
by h to get the configuration given by h′: moving earth over a large distance is more expensive
than moving it over a short distance. For formal definitions of histograms and the 1st Wasserstein
distance we refer to Section 2.4.

Lemma 3.2 (VerifyHist protocol of [HMX10], informal). There is a constant-round public-coin
protocol VerifyHist where the prover and the verifier get as input the circuit R(x, ·) and a histogram
h, and we have:

Completeness: If h is the histogram of PR,x, then the verifier accepts with high probability.

Soundness: If h is far from the histogram of PR,x in the 1st Wasserstein distance, then the verifier
rejects with high probability.

The formal statement can be found in Section 2.5.

14

The new Heavy Samples Protocol. The idea to approximate the probability gH is very simple.
The honest prover sends the histogram of PR,x, and the verifier uses the VerifyHist protocol to verify
it. Finally, the verifier simply reads the probability gH from the histogram.

There is a technical issue that comes with this approach. For example, it may be that all y’s
with nonzero probability have the property that PR,x(y) is very close, but just below α2−m. In
this case, a cheating prover can send a histogram claiming that these y’s have probability slightly
above this threshold. This histogram has small Wasserstein distance from the true histogram, as
the probability mass is moved only over a short distance. Clearly, the verifier’s guess for gH is very
far from the true value in this case.

We note that the same issue appears in the proof of [BT06b], and we deal with it in exactly
the same way as they do: we choose the threshold α randomly, such that with high probability
Pry←PR,x [PR,x(y) is close to α2−m] is small (see Section 4.1 for the formal statement).

A public-coin Hiding Protocol for smooth distributions. We would like the verifier to only
send uniform random samples to the prover (as opposed to the original hiding protocol, where a
few samples from the distribution are hidden among uniform samples). We first describe the main
idea in the special and simpler case where PR,x is α-smooth. In this case, we can give the following
protocol, which uses gUY as advice:

The verifier sends uniform random samples y1, . . . , yk. The prover indicates for each sample
whether it is a yes-instance, and provides witnesses. Furthermore, the prover tells PR,x(yi) to the
verifier, and proves a lower bound on this probability. The verifier checks the witnesses and if
the fraction of yes-instances is approximately gUY, and considers the histogram h induced by the
probabilities PR,x(yi), and in particular checks if the probability mass of h is 1. Finally, the verifier
considers the histogram hY induced by only considering the yes-instances, and uses the total mass
in hY as its approximation of gYL.

To see completeness, the crucial point is that the smoothness assumption implies that the
verifier can get a good approximation of the true histogram.

Soundness follows because the prover cannot claim the probabilities to be too large (as otherwise
the lower bound protocol rejects), and it cannot claim many probabilities to be too small, as
otherwise the mass of h gets significantly smaller than 1. As it cannot lie much about yes-instances,
this implies a good approximation of gYL.

Dealing with general distributions. The above idea can be applied even to general distribu-
tions, assuming that the verifier knows the probability gUH := Pry←{0,1}m [P

R,x(y) ≥ α2−m] of a
uniform random sample being heavy. The prover still provides the same information. The verifier
only considers the part of the induced histogram h below the α2−m threshold, and checks that the
mass of h below the threshold is close to 1− gUH.

As in the heavy samples protocol, we again encounter the technical issue that many y’s could
have probability close to the threshold, in which case the prover can cheat. But, as discussed earlier,
this situation occurs with small probability over the choice of α.

Approximating the probability of a uniform sample being heavy. Thus, it remains to
give a protocol to approximate gUH. We do this in exactly the same way as the Heavy Samples
protocol approximates gH. That is, given the histogram that was verified using VerifyHist, the
verifier simply reads the approximation of gUH from the histogram. The proof that this works is
rather technical, as we must show that small Wasserstein distance between the true and the claimed
histogram implies a small difference of the probability gUH and its approximation read from the

15

claimed histogram. We note that we include the protocol for approximating gUH directly into our
Heavy Samples protocol.

4 The New Protocols

We give protocols to replace the Heavy Samples Protocol and the Hiding Protocol of [BT06b]. A
technical overview including proof intuitions can be found in Section 3. In this section, we give the
two protocols and state the guarantees they give. The protocol analyses can be found in Sections 5
and 6.

4.1 Choosing a Random Threshold

We let Aα0,δ be the uniform distribution on {α0(1 + 3δ)i : 0 ≤ i ≤ 1/δ}. This distribution will be
used to choose a threshold parameter α. The following claim is from [BT06b].

Claim 4.1 (Choosing a random threshold). For every α0 > 0 and 0 < δ < 1/3, and every
distribution P on {0, 1}m we have

E
α←Aα0,δ

[
Pr
y←P

[P(y) ∈ (1± δ)α2−m]

]
≤ δ.

We get that with high probability over the choice of α there is only little mass close to the
threshold:

Claim 4.2. For every distribution P on {0, 1}m and ε ∈ (0, 1), with probability at least 1 − 20
√
ε

over the choice of α from Aα0,4ε, we have Pry←P[P(y) ∈ (1± 4
√
ε)α2−m] ≤ 1

5

√
ε.

Proof. This follows from Claim 4.1 by applying Markov’s inequality.

4.2 Preliminaries

Since our protocols can be used to replace part of the proof of [BT06b], we mostly stick to their
notation. We give a formal definition of interactive proofs, histograms, and the Wasserstein distance
in Section 2. As in [BT06b], we let Aα0,δ be the uniform distribution on {α0(1+3δ)i : 0 ≤ i ≤ 1/δ}.
This distribution will be used to choose a threshold parameter α, such that only little probability
mass is close to the threshold (see Section 4.1). We consider circuits C : {0, 1}n → {0, 1}m, and
the distribution PC defined by PC(y) = Prr←{0,1}n [C(r) = y]. We use the VerifyHist protocol

of [HMX10] which on input (C, ε, h) verifies that h is close to the (t, ε)-histogram of PC (see
Section 2.5). We also use the parallel lower bound protocol as stated in [BT06b], which on input
(C, ε, y1, s1, . . . , yk, sk) ensures that ∀i : |C−1(yi)| ≥ (1− ε)si (see Section 2.5).

We define the following probabilities. For a given threshold parameter α > 1, a circuit C :
{0, 1}n → {0, 1}m and a nondeterministic circuit3 V : {0, 1}m × {0, 1}ℓ → {0, 1} we let

gC,α
H = Pry←PC [PC(y) ≥ α2−m], gC,α

UH = Pry←{0,1}m [P
C(y) ≥ α2−m],

gC,V,α
UY = Pry←{0,1}m [y ∈ V], gC,V,α

YL = Pry←PC [PC(y) < α2−m ∧ y ∈ V].

In the technical overview as given above (Section 3), we considered the circuit R(x, r) defined
by the reduction R, which for a fixed x and randomness r outputs the first reduction query y. The

3A nondeterministic circuit V is of the form V : {0, 1}m ×{0, 1}ℓ → {0, 1}, and we say y ∈ {0, 1}m is accepted by
V (or also y ∈ V) if there exists w ∈ {0, 1}ℓ such that V (y,w) = 1.

16

protocols we give in the following are supposed to get as input the circuit C(r) := R(x, r) for a
fixed x. Furthermore, for the new hiding protocol the input circuit V is supposed to provide an
NP verifier for the language L′ as described in the technical overview.

4.3 The new Heavy Samples Protocol

Given a circuit C and α > 0, the goal of the heavy samples protocol is to estimate the probability
of heavy elements. The first probability, which we denote by gC,α

H is the probability that an element

chosen from PC is α-heavy, i.e. satisfies PC(y) ≥ α2−m. The second probability, denoted gC,α
UH is

the probability that a uniform random element satisfies this property.
We give a protocol for the family of promise problems {ΠPubHeavy,α}, which is defined as follows.

ΠPubHeavy,α
Y :=

{
(C, pH, pUH, ε) : pH = gC,α

H ∧ pUH = gC,α
UH

}

ΠPubHeavy,α
N :=

{
(C, pH, pUH, ε) : pH /∈ [gC,α

H ± 4

5

√
ε] ∨ pUH /∈ [gC,α

UH ± 10
√
ε]

}

We assume that the input (C, pH, pUH, ε) is such that C : {0, 1}n → {0, 1}m is a circuit, pH, pUH ∈
[0, 1], and ε ∈ (0, 1). The proof of the following theorem can be found in Section 5, and the protocol
is stated below.

Theorem 4.3. For every integer α0, with probability at least 1 − 20
√
ε over the choice of α from

Aα0,4ε, the heavy samples protocol is a constant-round interactive proof for ΠPubHeavy,α with com-

pleteness 1− 2−n and soundness 1− 2−n, where the verifier runs in time poly(Size(C)
ε).

The heavy samples protocol. On input (C, pH, pUH, ε):

Prover: Let t :=
⌊
n
ε̃

⌋
and ε̃ := (4

100)
2ε2, and send an (ε̃, t)-histogram h ∈ [0, 1]t+1 to the

verifier.

If the prover is honest, it sends the (ε̃, t)-histogram of PC , denoted by hC .

Prover and Verifier: Run the VerifyHist protocol (Lemma 2.10) on input (C, ε̃, h). The
verifier rejects in case that protocol rejects.

Verifier: Let j∗ := max{j : 2−(j+1)ε̃ > α2−m}. Accept if and only if all of the following
conditions hold:

(a)
∑

j∈{j∗±⌈25/
√
ε̃⌉}

hj ≤ ε̃1/4 (b)
∑

j≤j∗
hj ∈ [pH ± ε̃1/4]

(c)
1

2m

∑

j≤j∗
hj · 2jε̃ ∈ [pUH ± 4ε̃1/4]

4.4 The new Hiding Protocol

Given a circuit C, a nondeterministic circuit V , and α > 0, the goal of the hiding protocol is as
follows. Given advice gC,V,α

UY and approximations of the probabilities gC,α
H and gC,α

UH , the protocol

approximates the probability gC,V,α
YL that an element is a yes-instance and α-light.

17

We give a protocol for the family of promise problems {ΠHide,α}, which is defined as follows.

ΠHide,α
Y :=

{
(C, V, pH, pUH, pYL, ε) : pH = gC,α

H ∧ pUH = gC,α
UH ∧ pYL = gC,V,α

YL

}

ΠHide,α
N :=

{
(C, V, pH, pUH, pYL, ε) : pH ∈ [gC,α

H ± 4

5

√
ε] ∧ pUH ∈ [gC,α

UH ± 10
√
ε]

∧ pYL /∈ [gC,V,α
YL ± 117

√
εα]

}

We assume that the input (C, V, pH, pUH, pYL, ε) is such that C : {0, 1}n → {0, 1}m is a circuit,
V : {0, 1}m × {0, 1}ℓ → {0, 1} is a nondeterministic circuit, pH, pUH, pYL ∈ [0, 1], and ε ∈ (0, 1).
The proof of the following theorem can be found in Section 6, and the protocol is given below.

Theorem 4.4. For every integer α0, with probability at least 1 − 20
√
ε over the choice of α from

Aα0,4ε, the hiding protocol with advice gC,V,α
UY is a constant-round interactive proof for ΠHide,α with

completeness 1− 5ε and soundness 6ε, where the verifier runs in time poly(Size(C)+Size(V)
ε).

The hiding protocol. On input (C, V, pH, pUH, pYL, ε) and advice gC,V,α
UY :

Verifier: Let t :=
⌈
n
ε

⌉
and let Bi for i ∈ (t) be defined as in Definition 2.5. Let k :=

ln(2ε)α
2 9
2ε2

. Choose y1, . . . , yk ← {0, 1}m, and send y1, . . . , yk to the prover.

Prover: Send a labeling u, a set Y ⊆ [k] and witnesses (wi)i∈Y to the verifier.

If the prover is honest, it sends Y := {i : yi ∈ V }, and witnesses (wi)i∈Y such that V (yi, wi) =

1, and4 u such that for i ∈ [k] we have u(i) =

{
j if ∃j : yi ∈ Bj
∞ otherwise.

Verifier: Let L :=
{
i : 2−(u(i)+1)ε < α2−m

}
, H := [k] \ L, and reject if one of the following

conditions does not hold:

(a)
|Y|
k
∈ [gC,V,α

UY ± ε], (b) ∀i ∈ Y : V (yi, wi) = 1,

(c)
|H|
k
∈ [pUH ± 3

√
ε], (d)

1

k

∑

i∈L
2m · 2−u(i)ε ∈ [1− pH ± 5

√
ε],

(e)
1

k

∑

i∈L∩Y
2m · 2−u(i)ε ∈ [pYL ± 5

√
ε].

Prover and Verifier: Run the parallel lower bound protocol (see Lemma 2.8) on input
(C, ε/2, y1, s1, . . . , yk, sk), using the values si = 2m · 2−(u(i)+1)ε.

5 Analysis of the New Heavy Samples Protocol

Throughout the proof, we will use ε̃ := (4
100)

2ε2. Note that then

ΠPubHeavy,α
N =

{
(C, pH, pUH, ε) : pH /∈ [gC,α

H ± 4ε̃1/4] ∨ pUH /∈ [gC,α
UH ± 50ε̃1/4]

}
,

Also, Claim 4.2 states the following when substituting ε̃ for ε:

Claim 5.1. For every distribution P on {0, 1}m and ε ∈ (0, 1), with probability at least 1− 100ε̃1/4

over the choice of α from Aα0,4ε, we have Pry←P[P(y) ∈ (1± 100
√
ε̃)α2−m] ≤ ε̃1/4.

4For the special symbol ∞, we use the conventions 2−∞ε = 0, ∀i ∈ N : i < ∞, and ∀i ∈ N : ∞+ i = ∞.

18

5.1 Proof of Completeness: Overview

We use the following lemma, which states that if there is only little mass around the threshold
α2−m, then the verifier’s checks are indeed satisfied for the honest prover who sends hC .

Lemma 5.2. Suppose

Pr
y←PC

[PC(y) ∈ (1± 100
√
ε̃)α2−m] ≤ ε̃1/4. (1)

Then we have

(i) 2−(j
∗−⌈25/

√
ε̃⌉)ε̃ ≤ 228

√
ε̃α2−m

2−(j
∗+⌈25/

√
ε̃⌉)ε̃ ≥ 2−28

√
ε̃α2−m

(ii)
∑

j∈{j∗±⌈25/
√
ε̃⌉}

hCj ≤ ε̃1/4

(iii)
∑

j≤j∗
hCj ∈ [gC,α

H ± ε̃1/4]

(iv)
1

2m

∑

j≤j∗
hCj · 2jε̃ ∈ [gC,α

UH ± 4ε̃1/4]

With this, it is straightforward to prove completeness:

Proof of completeness. With high probability there is indeed little mass around the threshold: by
Claim 5.1, (1) holds with probability at least 1 − 100ε̃1/4 = 1 − 20

√
ε over the choice of α. Fur-

thermore, by the completeness of VerifyHist, that protocol accepts the true histogram hC with
probability at least 1− 2−n. Finally, the above lemma gives that (1) implies (a)-(c).

It remains to prove Lemma 5.2. We focus on the interesting parts of the proof, and defer the
technical details to Section 5.3.

Proof of Lemma 5.2. We defer the proofs of (i) and (ii) to Section 5.3. Part (i) is a straightforward
calculation, which follows by the definition of j∗. Part (ii) then follows from part (i), since the
probabilities we sum over are close to the threshold α2−m and we can apply (1).

Now part (iii) is easy to prove: by definition of j∗ and hCj we have

gC,α
H ∈

[∑

j≤j∗
hCj ,

∑

j≤j∗+1

hCj
]
.

Now (ii) gives hCj∗+1 ≤ ε̃1/4, which gives the claim.
The proof of (iv) again follows using (ii) (i.e. as there is only little mass close to the threshold),

and we give the proof in Section 5.3.

5.2 Proof of Soundness: Overview

We use the following lemma, which states that if there is only little mass around the threshold, and
the guarantee on the Wasserstein distance (which holds with high probability by the soundness of
VerifyHist) indeed holds, then the values the verifier computes are close to the true values gC,α

H and

gC,α
UH .

19

Lemma 5.3. Suppose that the verifier’s check (a) holds,

Pr
y←PC

[PC(y) ∈ (1± 100
√
ε̃)α2−m] ≤ ε̃1/4, (2)

and W1(hC , h) ≤ 20
t . Then we have

(i)
∑

j≤j∗
hj ∈

[∑

j≤j∗
hCj ± 2ε̃1/4

]
,

(ii)
∑

j≤j∗
hj ∈

[
gC,α
H ± 3ε̃1/4

]
,

(iii)
∑

j≤j∗
hj2

jε̃ ∈
[
gC,α
UH ± 46ε̃1/4

]
.

With this lemma, it is straightforward to prove soundness:

Proof of soundness. By Claim 5.1, (2) holds with probability at least 1− 100ε̃1/4 = 1− 20
√
ε over

the choice of α. Now, by the soundness of VerifyHist, we get that W1(hC , h) ≤ 20
t with probability

at least 1 − 2−n (or the verifier rejects). Clearly if (a) does not hold, the verifier rejects. If (a)
holds, then by the above lemma we have (ii) and (iii), which as we are considering a no-instance of
ΠPubHeavy,α gives that one of the following holds:

∑

j≤j∗
hj /∈ [pH ± ε̃1/4],

∑

j≤j∗
hj2

jε̃ /∈ [pUH ± 4ε̃1/4].

Thus the verifier rejects in (b) or (c).

It remains to prove Lemma 5.3. We focus on the interesting parts of the proof, and defer the
details to Section 5.4.

Proof of Lemma 5.3. We defer the proof of (i). It is not hard to see that if
∑

j≤j∗ h
j is not in the

desired interval, then W1(hC , h) is big: by (a) and Lemma 5.2 (ii), only little mass can be around
the threshold for both h and hC , and thus a lot of mass must be moved from below to above the
threshold, or vice versa.

Part (ii) can then be proved easily: by Lemma 5.2 (iii), the interval in (i) is contained in
[gC,α

H ± 3ε̃1/4].
It remains to prove (iii). For j ∈ (t) we consider the differences dj := hj − hCj . Then our

assumption W1(hC , h) ≤ 20
t gives

20

t
≥W1(hC , h) =

1

t

∑

i∈(t)

∣∣∣
∑

j≤i
hj −

∑

j≤i
hCj

∣∣∣ =
1

t

∑

i∈(t)

∣∣∣
∑

j≤i
dj

∣∣∣ = E
i←(t)



∣∣∣
∑

j≤i
dj

∣∣∣


 . (3)

Furthermore, part (i) gives

∑

j≤j∗
dj =

∑

j≤j∗
hj −

∑

j≤j∗
hCj

(i)
∈ [±2ε̃1/4]. (4)

At this point, we will use Lemma 5.4 as stated below which contains the core of the argument. As
(3) and (4) hold, we may apply this lemma to the dj as defined above, and obtain

1

2m

∑

j≤j∗
dj2

jε̃ ∈
[
±42ε̃1/4

]
.

20

Plugging in the definition of the dj , we get

1

2m

∑

j≤j∗
hj2

jε̃ ∈
[1

2m

∑

j≤j∗
hCj 2

jε̃ ± 42ε̃1/4
]
⊆

[
gC,α
UH ± 46ε̃1/4

]
,

where we used Lemma 5.2 (iv) for the above set inclusion.

Lemma 5.4. Let t, j∗ and ε̃ be as above, and fix any d = (d0, . . . , dt) ∈ Rt+1. Suppose that

(i)
∑

j≤j∗
dj ∈ [−δ, δ], (ii) E

i←(t)

[∣∣∑

j≤i
dj
∣∣] ≤ 20

t
.

Then we have
1

2m

∑

j≤j∗
dj2

jε̃ ∈
[
±(δ + 40ε̃)

]
.

Again, we defer a few details of the proof to Section 5.4.

Proof. We only prove the the inequality
∑

j≤j∗ dj2
jε̃ ≤ (δ + 40ε̃)2m. The proof of

∑
j≤j∗ dj2

jε̃ ≥
−(δ + 40ε̃)2m is analogous.

We first define a vector d′ such that for all i < j∗ it holds that
∑

j≤i d
′
i = min{∑j≤i di, 0}, and∑

j≤j∗ d
′
i =

∑
j≤j∗ di. Note that this defines d′ uniquely.

Claim 5.5. We have

E
i←(t)

[∣∣∑

j≤i
d′j
∣∣] ≤ E

i←(t)

[∣∣∑

j≤i
dj
∣∣], (5)

∑

j≤j∗
d′j2

jε̃ ≥
∑

j≤i
dj2

jε̃. (6)

As the proof is not difficult, we defer it to Section 5.4 and just give some intuition here. The
first part follows by definition. To prove the second part, we show that d′ can be obtained from d
by moving mass from coordinate i to coordinate i+1 for each i individually. This then implies the
claim, as moving mass to larger coordinates only increases the sum.

Now define d′′ as follows: d′′j := d′j for j < j∗, d′′j∗ := d′j∗ −
∑

j≤j∗ d
′
j , and d′′j := 0 for j > j∗.

Claim 5.6. We have
∑

j≤j∗
d′′j = 0, (7)

∀i ∈ (t) :
∑

j≤i
d′′j ≤ 0, (8)

E
i←(t)

[∣∣∑

j≤i
d′′j
∣∣] ≤ E

i←(t)

[∣∣∑

j≤i
d′j
∣∣], (9)

∑

j≤j∗
d′′j2

jε̃ ≥
∑

j≤j∗
d′j2

jε̃ − δ2j
∗ ε̃. (10)

The proof is straightforward, and we defer it to Section 5.4.

Claim 5.7. There exists t ∈ N and vectors v(1), . . . , v(t) ∈ Rt+1 such that the following holds:

(i) d′′ =
∑

a∈[t] v
(a),

21

(ii) For every a ∈ [t], v(a) has exactly two nonzero entries, whose index positions we denote by

i(a) and i′(a) where i(a) < i′(a) ≤ j∗. Furthermore, v
(a)
i(a) = −wa and v

(a)
i′(a) = wa for some

wa ∈ R, wa > 0.

We prove the claim in Section 5.4. There we show that the vectors v(a) can be defined itera-
tively by greedily picking the smallest nonzero index position i (which must have negative di), and
matching it with the smallest index position i′ with di′ > 0.

Now note that

E
i←(t)

[∑

j≤i
d′′j
]
= E

i←(t)

[∑

j≤i

∑

a

v
(a)
j

]
=

∑

a

E
i←(t)

[∑

j≤i
v
(a)
j

]

= −
∑

a

1

t
wa(i

′(a)− i(a)). (11)

Then we find

∑

j≤j∗
d′′j2

jε̃ =
∑

j≤j∗

∑

a

v
(a)
j 2jε̃ =

∑

a

∑

j≤j∗
v
(a)
j 2jε̃ =

∑

a

wa(2
i′(a)ε̃ − 2i(a)ε̃)

=
∑

a

wa2
i′(a)ε̃(1− 2(i(a)−i

′(a))ε̃)

≤
∑

a

wa2
i′(a)ε̃(i′(a)− i(a))(1 − 2−ε̃)

= (1− 2−ε̃)
∑

a

wa2
i′(a)ε̃(i′(a)− i(a))

≤ (1− 2−ε̃)
∑

a

wa2
j∗ε̃(i′(a)− i(a))

(11)
= (1− 2−ε̃)2j

∗ε̃


−t · E

i←(t)

[∑

j≤i
d′′j
]



(8)
= (1 − 2−ε̃)2j

∗ ε̃ · t · E
i←(t)

[∣∣∑

j≤i
d′′j
∣∣]

(ii)

≤ 2ε̃ · 2j∗ε̃ · t · 20
t

= 40ε̃2j
∗ε̃. (12)

The first inequality above follows by Bernoulli’s inequality5 when setting n = i′(a) − i(a) and
x = 2−ε̃ − 1. We now conclude the argument by calculating

∑

j≤j∗
dj2

jε̃
(6)

≤
∑

j≤j∗
d′j2

jε̃
(10)

≤
∑

j≤j∗
d′′j 2

jε̃ + δ2j
∗ε̃

(12)

≤ (40ε̃ + δ)2j
∗ ε̃

≤ (40ε̃ + δ)2m.

5.3 Proof of Completeness: the Details

In the following, we give the parts of the proof of Lemma 5.2 that we omitted in Section 5.1.

5Bernoulli’s inequality states that for any n ∈ N, n ≥ 0 and any x ∈ R, x ≥ −1 we have (1 + x)n ≥ 1 + nx.

22

Proof of (i). From the definition of j∗ we get that 2−(j
∗+1)ε̃ ∈ (α2−m, 2ε̃α2−m] (otherwise, j∗ would

not be maximal). Thus, we find

2−(j
∗−⌈25/

√
ε̃⌉)ε̃ ≤ 2−(j

∗−26/
√
ε̃)ε̃ = 2−(j

∗+1)ε̃2(26/
√
ε̃+1)ε̃ ≤ 2ε̃α2−m227

√
ε̃

≤ α2−m228
√
ε̃,

2−(j
∗+⌈25/

√
ε̃⌉)ε̃ ≥ 2−(j

∗+26/
√
ε̃)ε̃ = 2−(j

∗+1)ε̃2−(26/
√
ε̃−1)ε̃ ≥ α2−m2−27

√
ε̃.

Proof of (ii). Note that hCj =
∑

y:PC(y)∈(2−(j+1)ε̃,2−jε̃] P
C(y). Since j ≤ j∗ + ⌈25/

√
ε̃⌉, we only sum

over y such that

PC(y) ≥ 2−(j
∗+⌈25/

√
ε̃⌉+1)ε̃ = 2−ε̃2−(j

∗+⌈25/
√
ε̃⌉)ε̃ (i)

≥ α2−m2−29
√
ε̃.

On the other hand, because j ≥ j∗ − ⌈25/
√
ε̃⌉, for all y we sum over, we have

PC(y) ≤ 2−(j
∗−⌈25/

√
ε̃⌉)ε̃ (i)

≤ α2−m228
√
ε̃.

Thus, we conclude that
∑

j∈{j∗±⌈25/
√
ε̃⌉}

hCj ≤
∑

y:α2−m2−29
√

ε̃≤PC(y)≤α2−m228
√

ε̃

PC(y) ≤ ε̃1/4,

where the last inequality holds because [2−29
√
ε̃, 228

√
ε̃] ⊆ (1± 100

√
ε̃), and thus (1) can be applied.

Proof of (iv). By definition of hCj , we have that for each j

Pr
y←{0,1}m

[
PC(y) ∈ (2−(j+1)ε̃, 2−jε̃]

]
∈
[1

2m
hCj 2

jε̃,
1

2m
hCj 2

(j+1)ε̃
]
.

Thus the definition of j∗ gives

gC,α
UH ∈

[1

2m

∑

j≤j∗
hCj 2

jε̃,
1

2m

∑

j≤j∗+1

hCj 2
(j+1)ε̃

]
. (13)

Now we find
∑

j≤j∗+1

hCj 2
(j+1)ε̃ =

∑

j≤j∗
hCj 2

(j+1)ε̃ + hCj∗+12
(j∗+2)ε̃

(ii)

≤ 2ε̃
∑

j≤j∗
hCj 2

jε̃ + ε̃1/42ε̃2(j
∗+1)ε̃

< (1 + 2ε̃)
∑

j≤j∗
hCj 2

jε̃ +
ε̃1/42ε̃

α
2m

≤
∑

j≤j∗
hCj 2

jε̃ +
(
2ε̃+

ε̃1/42ε̃

α

)
2m

≤
∑

j≤j∗
hCj 2

jε̃ + 4ε̃1/42m,

where the second inequality follows by definition of j∗, and the third inequality holds since 2jε̃ ≤ 2m

for any j ≤ j∗ and
∑

j≤j∗ h
C
j ≤ 1. Plugging this into (13) gives the claim.

23

5.4 Proof of Soundness: the Details

Proof of Lemma 5.3 (i). First suppose
∑

j≤j∗
hj <

∑

j≤j∗
hCj − 2ε̃1/4. (14)

We show that this implies W1(hC , h) > 20
t , contradicting our assumption. For any i ∈ {j∗ −

⌈25/
√
ε̃⌉, . . . , j∗} we have

∑

j≤i
hj ≤

∑

j≤j∗
hj

(14)
<

∑

j≤j∗
hCj − 2ε̃1/4 ≤

∑

j≤i
hCj − ε̃1/4, (15)

where the last inequality holds by Lemma 5.2 (ii). This gives
←−
W1 (hC , h) ≥ 1

t · 25√
ε̃
· ε̃1/4 ≥ 25

t .

Now assume that
∑

j≤j∗
hj >

∑

j≤j∗
hCj + 2ε̃1/4. (16)

Again, we show that this implies W1(hC , h) > 20
t . Similar to above, for any i ∈ {j∗−⌈25/

√
ε̃⌉, . . . , j∗}

we have

∑

j≤i
hj ≥

∑

j≤j∗
hj − ε̃1/4

(16)
>

∑

j≤j∗
hCj + ε̃1/4 ≥

∑

j≤i
hCj + ε̃1/4, (17)

where the first inequality holds by the verifier’s check (a). Thus
−→
W1 (hC , h) ≥ 1

t · 25√ε̃ · ε̃
1/4 ≥ 25

t .

Proof of Claim 5.5. Inequality (5) holds because for each i,
∣∣∑

j≤i d
′
i

∣∣ ≤
∣∣∑

j≤i di
∣∣ by definition.

To see (6), for each k < j∗ we define e(k) = (e
(k)
0 , . . . , e

(k)
t) as follows. If

∑
j≤k dj > 0, we let

e
(k)
i :=





−∑
j≤k dj if i = k,

∑
j≤k dj if i = k + 1,

0 otherwise.

and thus

∑

j≤i
e
(k)
i =

{
−∑

j≤k dj if i = k,

0 otherwise.

If
∑

j≤k dj ≤ 0, we let e
(k)
i = 0 for all i. Now we find for any k and i that

∑

j≤i
(dj + e

(k)
j) =

∑

j≤i
dj +

∑

j≤i
e
(k)
j =

{∑
j≤i dj if i 6= k,

min{∑j≤i dj , 0} if i = k.
(18)

This implies that d +
∑

k<j∗ e
(k) = d′. Since by definition it holds that

∑
j<j∗ e

(k)
j 2jε̃ ≥ 0 for any

k, we find
∑

j≤j∗
d′j2

jε̃ =
∑

j≤j∗
(dj +

∑

k<j∗
e
(k)
j)2jε̃ =

∑

j≤j∗
dj2

jε̃ +
∑

j≤j∗

∑

k<j∗
e
(k)
j 2jε̃

=
∑

j≤j∗
dj2

jε̃ +
∑

k<j∗

∑

j≤j∗
e
(k)
j 2jε̃ ≥

∑

j≤j∗
dj2

jε̃.

24

Proof of Claim 5.6. Equality (7) holds because
∑

j≤j∗ d
′′
j =

∑
j<j∗ d

′
j +d′j∗−

∑
j≤j∗ d

′
j = 0, and (8)

follows by definition. Inequality (9) follows because for i < j∗ we have
∣∣∑

j≤i d
′′
j

∣∣ =
∣∣∑

j≤i d
′
j

∣∣, and
for i ≥ j∗ we have 0 =

∣∣∑
j≤i d

′′
j

∣∣ ≤
∣∣∑

j≤i d
′
j

∣∣.
To see (10), we note that

∑

j≤j∗
d′′j 2

jε̃ =
∑

j<j∗
d′j2

jε̃ + d′j∗2
j∗ε̃ − (

∑

j≤j∗
d′j)2

j∗ ε̃ =
∑

j≤j∗
d′j2

jε̃ − (
∑

j≤j∗
d′j)2

j∗ε̃

(i)

≥
∑

j≤j∗
d′j2

jε̃ − δ2j
∗ε̃.

Proof of Claim 5.7. We define the vectors v(1), . . . , v(t) using the following procedure.

1 a := 0
2 f := d′′

3 while (∃j : fj 6= 0) do
4 a := a+ 1
5 i := min{j : fj 6= 0}
6 i′ := min{j : j > i ∧ fj > 0}
7 w := min{|fi|, |fi′ |}
8 for j = 0 to t do

9 if j = i then v
(a)
j := −w

10 else if j = i′ then v
(a)
j := w

11 else v
(a)
j := 0

12 f := f − v(a)

13 t := a

14 return (v(1), . . . , v(t))

We claim that the following invariants always hold for f :

Invariant 1:
∑

j≤j∗
fj = 0, Invariant 2: ∀k ∈ (t) :

∑

j≤k
fj ≤ 0.

By (7) and (8), the invariants hold in the beginning where f = d′′. Now suppose the invariants
hold for f in some loop iteration, and we show they hold for f ′ = f − v(a) as defined in the next
iteration, given f still has a nonzero component. As invariant 2 holds for f , we have that fi < 0,

invariant 1 for f implies that there exists i′ with fi′ > 0. The definition of v
(a)
j directly implies that

invariant 1 holds for f ′. Invariant 2 clearly holds for f ′ for any k < i, as the sum does not change.
For k = i it holds because w < |fi| and fi is the first non-zero component. For i < k < i′ it holds
because ∑

j≤k
f ′j ≤

∑

j≤i
f ′j ≤ 0,

where the first inequality holds by the minimality of i′, and the second inequality is invariant 2 for
k = i. Finally, the second invariant also holds for k ≥ i′, as then

∑

j≤k
f ′j =

∑

j≤k
(fj − v

(a)
j) =

∑

j≤k
fj −

∑

j≤k
v
(a)
j

︸ ︷︷ ︸
=−w+w=0

≤ 0,

25

where we applied invariant 2 for f to obtain the inequality.
Finally, in every iteration some nonzero component of f (either f ′i or f

′
i′) is set to 0. Thus the

procedure terminates, and in the end we have
∑

i fi = 0 and
∑t

a=1 v
(a) = d′′. Clearly, the vectors

v(a) satisfy (ii).

6 Analysis of the New Hiding Protocol

Throughout this section, we let u′,Y ′,L′,H′ be the values as defined by the honest prover’s strategy.

6.1 Proof of Completeness: Overview

We define the labeling u′ for all y ∈ {0, 1}m as follows:

u′(y) =

{
j if ∃j : y ∈ Bj,
∞ otherwise.

Note that the honest prover sends a labeling u = u′ such that u′(yi) = u′(i). By definition, we have

Claim 6.1. PC(y) ∈ (2−(u
′(y)+1)ε, 2−u

′(y)ε].

The following lemma states that if the prover is honest, then the values calculated by the verifier
in (a), (c)-(e) are close to the true values as defined by PC .

Lemma 6.2. Let S := {y1, . . . , yk}, M := {y : PC(y) ∈ (1± 4ε)α2−m} , and assume

Pr
y←PC

[PC(y) ∈ (1± 4ε)α2−m] ≤ √ε, (19)

then

(i) Pr
y1,...,yk

[|Y ′|
k

/∈ [gC,V,α
UY ± ε]

]
≤ ε

(ii) Pr
y1,...,yk

[|H′|
k

/∈ [gC,α
UH ± 3

√
ε]

]
≤ ε

(iii) Pr
y1,...,yk

[
1

k

∑

i∈L′
2m · 2−u′(i)ε /∈ [1− gC,α

H ± 5
√
ε]

]
≤ ε

(iv) Pr
y1,...,yk

[
1

k

∑

i∈L′∩Y ′
2m · 2−u′(i)ε /∈ [gC,V,α

YL ± 5
√
ε]

]
≤ ε

(v) Pr
y1,...,yk

[|S ∩M|
k

≥ 3
√
ε

α

]
≤ ε

With this Lemma, it is not hard to prove completeness:

Proof of completeness. Suppose (C, V, pH, pUH, pYL, ε) ∈ ΠHide,α
Y . Fix α such that we have Pry←PC [PC(y) ∈

(1 ± 4ε)α2−m] ≤ √ε. By Claim 4.2, this holds with probability at least 1 − 20
√
ε over the choice

of α.
Since the prover is honest, it sends u′ and Y ′ with correct witnesses. Then Lemma 6.2 implies

that with probability at least 1 − 20ε (a), (c), (d), and (e) hold. Note that (b) always holds since
the prover is honest. Finally, The lower bound protocol rejects with probability at most ε/2.

26

It remains to prove Lemma 6.2. We defer the formal proof to Section 6.3, as the proof simply
applies Chernoff and Hoeffding bounds. Still, we give a short proof sketch.

Proof of Lemma 6.2 (Sketch). Part (i) is a straightforward application of the Chernoff bound.
Part (ii) also follows by the Chernoff bound, but here |H′|/k may deviate from gC,α

UH by O(
√
ε)

since this much mass may be close to the threshold, and be cut off due to the rounding we introduce
with the use of the labeling u′.

The proofs of (iii) and (iv) are applications of the Hoeffding bound, and again the O(
√
ε)

deviation comes in due to the rounding issues as described.
Finally, (v) is a straightforward application of the Chernoff bound on (19).

6.2 Proof of Soundness: Overview

Suppose (C, V, pH, pUH, pYL, ε) ∈ ΠHide,α
N . Then the following lemma states that if there is not too

much probability mass around the threshold, the verifier’s checks (a)-(d) are true, the guarantees
of the lower bound protocol hold, and the high probability estimates for u′,Y ′ and L′ hold, then
the sum in the verifier’s check (e) is close to gC,V,α

YL .

Lemma 6.3. Suppose (C, V, pH, pUH, pYL, ε) ∈ ΠHide,α
N . Define the sets S := {y1, . . . , yk}, M :=

{y : PC(y) ∈ (1± 4ε)α2−m}, assume that the verifier’s conditions (a)-(d) hold, and

Pr
y←PC

[PC(y) ∈ (1± 4ε)α2−m] ≤ √ε (20)

∀i ∈ [k] : u′(i) =∞ =⇒ u(i) =∞ (21)

∀i ∈ [k] : u(i) =∞∨ |C−1(yi)| > (1− ε/2) · 2m · 2−(u(i)+1)ε (22)

|S ∩M|
k

<
3
√
ε

α
(23)

|Y ′|
k
∈ [gC,V,α

UY ± ε], (24)

|H′|
k
∈ [gC,α

UH ± 3
√
ε], (25)

1

k

∑

i∈L′
2m · 2−u′(i)ε ∈ [1− gC,α

H ± 5
√
ε], (26)

1

k

∑

i∈L′∩Y ′
2m · 2−u′(i)ε ∈ [gC,V,α

YL ± 5
√
ε]. (27)

Then we have

1

k

∑

i∈L∩Y
2m2−u(i)ε ∈ [gC,V,α

YL ± 112
√
εα]

This lemma allows us to prove soundness as follows.

Proof of soundness. Let (C, V, pH, pUH, pYL, ε) ∈ ΠHide,α
N , and fix α such that Pry←P[P(y) ∈ (1 ±

4ε)α2−m] ≤ √ε. By Claim 4.2, this holds with probability at least 1− 20
√
ε over the choice of α.

We proceed to show that with probability at least 1−6ε, all the assumptions of Lemma 6.3 hold,
or the verifier rejects (with high probability). We have that (20) holds by the above assumption.
Moreover, (21) holds because u′(i) = ∞ implies |C−1(yi)| = 0 and thus the lower bound protocol
rejects with probability 1. Furthermore, (22) holds with probability at least 1−ε/2, by the soundness

27

of the parallel lower bound protocol. Finally, by Lemma 6.2 and the union bound, we have that
with probability at least 1 − 5ε, all of (23), (24), (25), (26), and (27) hold. Finally, either (a)-(d)
hold, or the verifier rejects.

If its assumptions hold, Lemma 6.3 gives that 1
k

∑
i∈L∩Y 2

m2−u(i)ε ∈ [gC,V,α
YL ± 112

√
εα]. To-

gether with the soundness assumption pYL /∈ [gC,V,α
YL ± 117

√
εα], this implies 1

k

∑
i∈L∩Y 2

m2−u(i)ε /∈
[pYL ± 5

√
εα], which gives that the verifier rejects in (e). This shows that the verifier rejects with

probability at least 1− 6ε.

It remains to prove Lemma 6.3. For this, we will use the notion of Loss and Gain, which is
defined as follows:

Definition 6.4. Given two mappings u′, u from [k] to (m) ∪ {∞} and a set A ⊆ [k], we define

LossA(u
′, u) :=

1

k

∑

i∈A:u′(i)<u(i)

2m(2−u
′(i)ε − 2−u(i)ε),

GainA(u
′, u) :=

1

k

∑

i∈A:u′(i)>u(i)

2m(2−u(i)ε − 2−u
′(i)ε).

♦

Note that Gain and Loss are always positive. This notion is supposed to capture the change of
probability mass when using the labeling u instead of the labeling u′, as described by the following
claim. Its proof is not hard, and we defer it to Section 6.4.

Claim 6.5. For any two mappings u′, u from [k] to (m) ∪ {∞} and any A ⊆ [k] we have

1

k

∑

i∈A
2m2−u(i)ε =

1

k

∑

i∈A
2m2−u

′(i)ε + GainA(u
′, u)− LossA(u

′, u).

We establish the following sequence of intermediate claims which will then allow us to prove
Lemma 6.3.

Claim 6.6. Under the conditions of Lemma 6.3, we have:

(i) ∀i ∈ [k] : u(i) ≥ u′(i)− 1

(ii) |L′ \ L| ≤ 3k
√
ε

(iii) |L \ L′| ≤ 19k
√
ε

(iv)
1

k

∑

i∈L′\L
2m2−u

′(i)ε ≤ 6
√
εα

1

k

∑

i∈L\L′

2m2−u(i)ε ≤ 38
√
εα

(v)
1

k

∑

i∈L∩L′
2m2−u(i)ε ∈ [1− gC,α

H ± 44
√
εα]

1

k

∑

i∈L∩L′
2m2−u

′(i)ε ∈ [1− gC,α
H ± 11

√
εα]

(vi) GainL∩L′(u′, u) ≤ 4ε

LossL∩L′(u′, u) ≤ 59
√
εα

28

We defer the proof to Section 6.4, and only sketch the proof here.

Proof (Sketch). Part (i) holds because the claimed probabilities as given by u′ cannot be too large,
as the lower bound guarantees (21) and (22) hold.

Part (ii) holds because in order to claim that some light yi, i ∈ L′ is heavy (i.e. i /∈ L), its
probability must be close to the threshold, which holds only for an Θ(

√
ε)-fraction of the yi’s. This

holds because the lower bounds are accurate up to a factor of even (1− ε/2).
Then (iii) follows from (ii), as by condition (c) and pUH ∈ [gC,α

UH ± Θ(
√

(ε))] we have that |L|
and |L′| can differ by at most k ·Θ(

√
ε).

Part (iv) is then a direct consequence of (ii) and (iii), using the fact that i ∈ L′ and i ∈ L,
respectively.

To see (v), we note that the sum over L′ using u′ is close to 1− gC,α
H by (26), and the sum over

L using u is close to 1− gC,α
H by the guarantee pH ∈ [gC,α

H ± 4/5
√
ε] and (d). Applying (ii) and (iii)

gives the result.
Finally, to prove (vi) we note that the two sums in (v) are close, which implies they have small

difference. By definition, this difference is exactly GainL∩L′(u′, u)−LossL∩L′(u′, u). Since (i) allows
to upper bound the Gain, we get the claim.

Finally, this allows us to prove our goal as follows. We only sketch the proof and defer the
details to Section 6.4.

Proof of Lemma 6.3 (Sketch). We will directly refer to (i)-(vi) as given by Claim 6.6. We make the
following observations:

(1) We may as well consider the sum over Y ′ instead of Y: this only induces an error of order
O(εα), because the prover must provide witnesses (see (a) and (b)), and the set |Y| must still
be big (24).

(2) We may as well consider the sum over L ∩ L′ instead of L or L′: this is a direct consequence
of (iv), and induces an error of at most O(

√
εα).

(3) By definition, GainL∩L′∩Y ′(u′, u) ≤ GainL∩L′(u′, u), LossL∩L′∩Y ′(u′, u) ≤ LossL∩L′(u′, u), and
thus both are bounded by Θ(

√
εα) by (vi).

This allows us to conclude (we put the actual constants to be explicit)

1

k

∑

i∈L∩Y
2m2−u(i)ε

(2)
∈ [

1

k

∑

i∈L∩L′∩Y
2m2−u(i)ε ± 38

√
εα]

(1)

⊆ [
1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε ± 42

√
εα] ⊆ [

1

k

∑

i∈L∩L′∩Y ′
2m2−u

′(i)ε ± 101
√
εα]

(2)

⊆ [
1

k

∑

i∈L′∩Y ′
2m2−u

′(i)ε ± 107
√
εα]

(27)

⊆ [gC,V,α
YL ± 112

√
εα],

where the third step follows by (3) and the definition of Gain and Loss.

29

6.3 Proof of Completeness: the Details

It is not hard to see that only few y’s in the support have PC(y) close to the threshold:

Claim 6.7. Suppose

Pr
y←PC

[PC(y) ∈ (1± 4ε)α2−m] ≤ √ε. (28)

Then

(i) |{y : PC(y) ∈ (1± 4ε)α2−m}| ≤ 2
√
ε · 2m
α

(ii) |{y : 2−u
′(y)ε ≥ α2−m > 2−(u

′(y)+1)ε}| ≤ 2
√
ε · 2m
α

Proof of Claim 6.7. We first prove (i). Let M1 be the set in (i). Now (28) gives that |M1| ≤√
ε

(1−4ε)α2−m ≤ 2
√
ε·2m
α (for ε ≤ 1/8).

To see (ii), letM2 be the set in (ii). Using Claim 6.1, we find that for any y ∈M2 we have

PC(y) ∈ [2−εα2−m, 2εα2−m] ⊆ (1± 2ε)α2−m,

and thusM2 ⊆M1, which proves the claim.

The following claim describes how we apply the Hoeffding bound, we will use it to prove parts
(iii) and (iv) of Lemma 6.2.

Claim 6.8. Consider the set Alight := {y : 2−(u
′(y)+1)ε < α2−m}, let A be any subset of {0, 1}m,

and define

M :=
∑

y∈Alight∩A
2−u

′(y)ε, Xi :=

{
2m · 2−u′(yi)ε if yi ∈ Alight ∩A,
0 otherwise.

Then we have for any δ > 0 that

Pr
y1,...,yk∈{0,1}km


1

k

∑

i∈[k]
Xi /∈ [M ± δ]


 ≤ 2 · exp

(
− 2kδ2

(1 + 2ε)2α2

)
.

Proof. For any i ∈ [k] we find Eyi∈{0,1}m [Xi] = M , and since 2−(u
′(yi)+1)ε < α2−m implies that

2m · 2−u′(yi)ε = 2m · 2ε · 2−(u′(yi)+1)ε ≤ (1 + 2ε)α, we have Xi ∈ [0, (1 + 2ε)α]. As

E
y1,...,yk

[
1

k

∑

i∈[k]
Xi] = E

y1
[X1] = M,

the Hoeffding bound (Lemma 2.2) gives the claim.

Proof of Lemma 6.2 (i). Let Yi be the indicator variable for the event yi ∈ V . Then Pr[Yi = 1] =
gC,V,α
UY , we have |Y ′| = ∑

i∈[k] Yi, and so the Chernoff bound (Lemma 2.1) gives

Pr
y1,...,yk

[|Y ′|
k

/∈ [gC,V,α
UY ± ε]

]
= Pr



∑

i∈[k]
Yi /∈ [gC,V,α

UY ± ε]k


 ≤ 2 exp(−ε2k

2
) ≤ ε.

30

Proof of Proof of Lemma 6.2 (ii). LetXi be the indicator variable for the event yi ∈ {y : 2−(u(y)+1)ε ≥
α2−m}. We first show that p := Pr[Xi = 1] is close to gC,α

UH . Using Claim 6.1, we get

p =
|{y : 2−(u(y)+1)ε ≥ α2−m}|

2m
≤ |{y : PC(y) ≥ α2−m}|

2m
= gC,α

UH ,

gC,α
UH ≤

|{y : 2−u(y)ε ≥ α2−m}|
2m

=
|{y : 2−(u(y)+1)ε ≥ α2−m}|

2m
+
|{y : 2−u(y)ε ≥ α2−m > 2−(u(y)+1)ε}|

2m

≤ p+ 2
√
ε,

where we applied Claim 6.7 to obtain the last inequality. This shows that

p ∈ [gC,α
UH − 2

√
ε, gC,α

UH]. (29)

Now we have |H′| = ∑
i∈[k]Xi, and so the Chernoff bound (Lemma 2.1) gives

Pr
y1,...,yk

[|H′|
k

/∈ [p± ε]

]
= Pr



∑

i∈[k]
Xi /∈ [p ± ε]k


 ≤ 2 · exp(−ε2k

2
) ≤ ε. (30)

Plugging (29) into the above gives the claim.

Proof of Proof of Lemma 6.2 (iii). Let y denote a bitstring in {0, 1}m. First note that

1− gC,α
H = 1−

∑

y:PC(y)≥α2−m

PC(y) =
∑

y:PC(y)<α2−m

PC(y) (31)

=
∑

y:PC(y)<2εα2−m

PC(y)−
∑

y:PC(y)∈[α2−m,2εα2−m)

PC(y)

︸ ︷︷ ︸
∈[0,√ε]

(32)

The above sum is indeed in [0,
√
ε], as [α2−m, 2εα2−m) ⊆ (1 ± 4ε)α2−m, and thus we can use

assumption (19). Using Claim 6.1, we find

∑

y:2−(u′(y)+1)ε<α2−m

PC(y) ≥
∑

y:PC(y)<α2−m

PC(y) = 1− gC,α
H

(32)

≥
∑

y:PC(y)<2εα2−m

PC(y)−√ε ≥
∑

y:2−u′(y)ε<2εα2−m

PC(y)−√ε

=
∑

y:2−(u′(y)+1)ε<α2−m

PC(y)−√ε.

This implies that 1− gC,α
H is in the interval




∑

y:2−(u′(y)+1)ε<α2−m

PC(y)±√ε


 ⊆

[
2±ε

∑

y:2−(u′(y)+1)ε<α2−m

2−u
′(y)ε

︸ ︷︷ ︸
=:M

±√ε
]
,

31

where the last step above follows by Claim 6.1. From this we get

M ≤ 2ε(1− gC,α
H) + 2ε

√
ε ≤ (1 + 2ε)(1 − gC,α

H) + 2
√
ε

≤ (1− gC,α
H) + 2ε+ 2

√
ε ≤ (1− gC,α

H) + 4
√
ε,

M ≥ 2−ε(1− gC,α
H)− 2−ε

√
ε ≥ (1− 2ε)(1 − gC,α

H)−√ε
≥ (1− gC,α

H)− 2ε−√ε ≥ (1− gC,α
H)− 3

√
ε,

and thus

M ∈ [(1 − gC,α
H)± 4

√
ε]. (33)

Applying Claim 6.8 to M as defined above for A = {0, 1}m, we get that

Pr
y1,...,yk

[
1

k

∑

i∈L′
2m2−u

′(i)ε /∈ [M ± ε]

]
≤ 2 exp

(
− 2kε2

(1 + 2ε)2α2

)
≤ ε.

By (33), we have [M ± ε] ⊆ [1− gC,α
H ± 5

√
ε], which gives the claim.

Proof of Proof of Lemma 6.2 (iv). The proof is analogous to the proof of (iii): we find

gC,V,α
YL =

∑

y:PC(y)<α2−m∧y∈V
PC(y) ∈

[
2±ε

∑

y:2−(u(y)+1)ε<α2−m∧y∈V
2−u(y)ε ±√ε

]
, (34)

where the
√
ε deviation can be seen as in (iii), since the sum here has only less summands. Thus,

applying Claim 6.8 to the sum in (34) for A = {y : y ∈ V } gives the claim.

Proof of Lemma 6.2 (v). Claim 6.7 gives that |M| ≤ 2
√
ε·2m
α . Let Xi be the indicator random

variable for the event yi ∈ M. Then |S ∩M| = ∑
i∈[k]Xi, and p := Eyi [Xi] ≤ 2

√
ε

α . The Chernoff
bound (Lemma 2.1) gives

Pr
S

[|S ∩M|
k

≥ 3
√
ε

α

]
≤ Pr
S

[|S ∩M|
k

≥ p+

√
ε

α

]

= Pr
S



∑

i∈[k]
Xi ≥ (p +

√
ε

α
)k


 ≤ exp

(
− εk

2α2

)
≤ ε.

32

6.4 Proof of Soundness: the Details

Proof of Claim 6.5. By definition of Gain and Loss, the right hand side equals

1

k

∑

i∈A
2m2−u

′(i)ε +
1

k

∑

i∈A:u′(i)>u(i)

2m(2−u(i)ε − 2−u
′(i)ε)

− 1

k

∑

i∈A:u′(i)<u(i)

2m(2−u
′(i)ε − 2−u(i)ε)

=
2m

k

(∑

i∈A
2−u

′(i)ε +
∑

i∈A:u′(i)>u(i)

2−u(i)ε −
∑

i∈A:u′(i)>u(i)

2−u
′(i)ε

−
∑

i∈A:u′(i)<u(i)

2−u
′(i)ε +

∑

i∈A:u′(i)<u(i)

2−u(i)ε
)

=
2m

k

(∑

i∈A
2−u

′(i)ε +
∑

i∈A:u′(i)6=u(i)

2−u(i)ε −
∑

i∈A:u′(i)6=u(i)

2−u
′(i)ε

)

=
1

k

∑

i∈A
2m2−u(i)ε.

Proof of Claim 6.6 (i). In case u′(i) = ∞, the claim follows by (21). So suppose u′(i) < ∞.
Towards a contradiction assume u(i) ≤ u′(i)− 2. Then

|C−1(yi)| = 2mPC(yi) ≤ 2m · 2−u′(i)ε ≤ 2m · 2−(u(i)+2)ε

= 2−ε · 2m · 2−(u(i)+1)ε ≤ (1− ε/2) · 2m · 2−(u(i)+1)ε,

where the first inequality follows by Claim 6.1. As u(i) < ∞ by assumption, this contradicts
(22).

Proof of Claim 6.6 (ii). By (23), we have |(L′ \ L) ∩M| ≤ 3k
√
ε

α . We show that (L′ \ L) ∩M = ∅.
Towards a contradiction assume there is some yi ∈ (L′ \ L) ∩M. We have

yi /∈ M =⇒ PC(y) /∈ (1± 4ε)α2−m, (35)

yi ∈ L′ =⇒ 2−(u
′(i)+1)ε < α2−m, (36)

yi /∈ L =⇒ 2−(u(i)+1)ε ≥ α2−m, (37)

PC(yi)
Claim 6.1
≤ 2−u

′(i)ε = 2ε2−(u
′(i)+1)ε

(36)

≤ (1 + 2ε)α2−m. (38)

Now (35) and (38) give that

PC(yi) ≤ (1− 4ε)α2−m. (39)

Then we find

2−(u
′(i)+1)ε

Claim 6.1
≤ PC(yi)

(39)

≤ (1− 4ε)α2−m
(37)

≤ (1− 4ε)2−(u(i)+1)ε

≤ 2−2ε2−(u(i)+1)ε = 2−(u(i)+3)ε,

which implies u(i) < u′(i) − 1, and thus contradicts (i).

33

Proof of Claim 6.6 (iii). (25), condition (c), and pUH ∈ [gC,α
UH ± 10

√
ε] give that

|L′|/k ∈ [1− gC,α
UH ± 3

√
ε], (40)

|L|/k ∈ [1− pUH ± 3
√
ε] ⊆ [1− gC,α

UH ± 13
√
ε]. (41)

Now we find

|L′ ∩ L| = |L′| − |L′ \ L|
(ii)

≥ |L′| − k · 3√ε
(40)

≥ k · (1− gC,α
UH − 6

√
ε), (42)

and thus

|L \ L′| = |L| − |L ∩ L′|
(42)

≤ |L| − k · (1− gC,α
UH − 6

√
ε)

(41)

≤ k · (1− gC,α
UH + 13

√
ε)− k · (1− gC,α

UH − 6
√
ε) = k · 19√ε.

Proof of Claim 6.6 (iv). By definition of L and L′ we find

1

k

∑

i∈L′\L
2m2−u

′(i)ε ≤ 1

k
|L′ \ L|2m2εα2−m

(ii)

≤ 1

k
k · 2ε · 3√εα

= 2ε · 3√εα ≤ 6
√
εα, (43)

1

k

∑

i∈L\L′

2m2−u(i)ε ≤ 1

k
|L \ L′|2m2εα2−m

(iii)

≤ 1

k
k · 2ε · 19√εα

= 2ε · 19√εα ≤ 38
√
εα. (44)

Proof of Claim 6.6 (v). We find

1

k

∑

i∈L
2m2−u(i)ε =

1

k

∑

i∈L∩L′
2m2−u(i)ε +

1

k

∑

i∈L\L′

2m2−u(i)ε

(44)
∈ 1

k

∑

i∈L∩L′
2m2−u(i)ε + [0, 38

√
εα],

1

k

∑

i∈L′
2m2−u

′(i)ε =
1

k

∑

i∈L∩L′
2m2−u

′(i)ε +
1

k

∑

i∈L′\L
2m2−u

′(i)ε

(43)
∈ 1

k

∑

i∈L∩L′
2m2−u

′(i)ε + [0, 6
√
εα].

Applying assumptions (d) and pH ∈ [gC,α
H ± 4

5

√
ε] to the first inclusion and assumption (26) to the

second inclusion gives the claim.

Proof of Claim 6.6 (vi). Claim 6.5 gives

1

k

∑

i∈L∩L′
2m2−u(i)ε =

1

k

∑

i∈L∩L′
2m2−u

′(i)ε + GainL∩L′(u′, u)− LossL∩L′(u′, u). (45)

34

Furthermore, (v) gives

1

k

∑

i∈L∩L′
2m2−u(i)ε ∈

[
1

k

∑

i∈L∩L′
2m2−u

′(i)ε ± 55
√
εα

]
(46)

Combining (45) and (46) then gives

GainL∩L′(u′, u)− LossL∩L′(u′, u) ∈ [0± 55
√
εα] (47)

Now we find

GainL∩L′(u′, u) =
1

k

∑

i∈L∩L′:u′(i)>u(i)

2m(2−u(i)ε − 2−u
′(i)ε)

(i)

≤ 1

k

∑

i∈L∩L′:u′(i)>u(i)

2m(2−(u
′(i)−1)ε − 2−u

′(i)ε)

=
1

k

∑

i∈L∩L′:u′(i)>u(i)

2m(2ε · 2−u′(i)ε − 2−u
′(i)ε)

=
1

k

∑

i∈L∩L′:u′(i)>u(i)

2m(2ε − 1)2−u
′(i)ε

≤ 2ε
1

k

∑

i∈L∩L′:u′(i)>u(i)

2m2−u
′(i)ε

(26)

≤ 2ε(1 − gC,α
H + 5

√
ε) ≤ 4ε. (48)

Now we get

LossL∩L′(u′, u)
(47)

≤ GainL∩L′(u′, u) + 55
√
εα

(48)

≤ 59
√
εα.

Proof of Lemma 6.3. Throughout the proof we will write (i)-(vi) to refer to the corresponding items
of Claim 6.6. Assumptions (a), (b) and (24), imply that

Y ⊆ Y ′ (49)

|Y ′ \ Y| ≤ 2εk, (50)

and so we find

1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε

(49)

≥ 1

k

∑

i∈L∩L′∩Y
2m2−u(i)ε

=
1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε − 1

k

∑

i∈L∩L′∩(Y ′\Y)
2m2−u(i)ε

(i∈L)
≥ 1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε − 1

k
|Y ′ \ Y|2m2εα2−m

(50)

≥ 1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε − 4εα.

35

This gives

1

k

∑

i∈L∩L′∩Y
2m2−u(i)ε ∈ [

1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε ± 4εα]. (51)

We find

1

k

∑

i∈L∩Y
2m2−u(i)ε =

1

k

∑

i∈L∩L′∩Y
2m2−u(i)ε +

1

k

∑

i∈(L\L′)∩Y
2m2−u(i)ε

(iv)
∈ 1

k

∑

i∈L∩L′∩Y
2m2−u(i)ε + [0, 38

√
εα], (52)

1

k

∑

i∈L′∩Y ′
2m2−u

′(i)ε =
1

k

∑

i∈L∩L′∩Y ′
2m2−u

′(i)ε +
1

k

∑

i∈(L′\L)∩Y ′

2m2−u
′(i)ε

(iv)
∈ 1

k

∑

i∈L∩L′∩Y ′
2m2−u

′(i)ε + [0, 6
√
εα], (53)

where we could apply (iv) because (L \L′)∩Y ⊆ L\L′ and (L′ \ L)∩Y ′ ⊆ L′ \ L. Claim 6.5 gives

1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε =

1

k

∑

i∈L∩L′∩Y ′
2m2−u

′(i)ε + GainL∩L′∩Y ′(u′, u)

− LossL∩L′∩Y ′(u′, u), (54)

and we get

GainL∩L′∩Y ′(u′, u) ≤ GainL∩L′(u′, u)
(vi)

≤ 4ε, (55)

LossL∩L′∩Y ′(u′, u) ≤ LossL∩L′(u′, u)
(vi)

≤ 59
√
εα. (56)

Thus we find

1

k

∑

i∈L∩Y
2m2−u(i)ε

(52)
∈ [

1

k

∑

i∈L∩L′∩Y
2m2−u(i)ε ± 38

√
εα]

(51)

⊆ [
1

k

∑

i∈L∩L′∩Y ′
2m2−u(i)ε ± 42

√
εα]

(54), (55), (56)

⊆ [
1

k

∑

i∈L∩L′∩Y ′
2m2−u

′(i)ε ± 101
√
εα]

(53)

⊆ [
1

k

∑

i∈L′∩Y ′
2m2−u

′(i)ε ± 107
√
εα]

(27)

⊆ [gC,V,α
YL ± 112

√
εα].

This concludes the proof.

36

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On
basing one-way functions on np-hardness. In Jon M. Kleinberg, editor,
STOC, pages 701–710. ACM, 2006. See also errata on author’s webpage:
http://www.wisdom.weizmann.ac.il/~oded/p_aggm.html.

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be recog-
nized in two rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Gary L. Miller, editor, STOC, pages 99–108. ACM, 1996.

[Bab85] László Babai. Trading group theory for randomness. In Robert Sedgewick, editor,
STOC, pages 421–429. ACM, 1985.

[BDCGL92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of
average case complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work. J.
ACM, 42(1):269–291, 1995.

[BL13] Andrej Bogdanov and Chin Ho Lee. Limits of provable security for homomorphic
encryption. In Ran Canetti and Juan A. Garay, editors, CRYPTO (1), volume 8042
of Lecture Notes in Computer Science, pages 111–128. Springer, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, STOC, pages 575–584. ACM, 2013.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with ap-
plications to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[Blu88] Manuel Blum. Designing programs to check their work. Technical Report 88-09, ICSI,
1988.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[Bra83] Gilles Brassard. Relativized cryptography. IEEE Transactions on Information Theory,
29(6):877–893, 1983.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and
Trends in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for
NP problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[DBL10] Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC
2010, Cambridge, Massachusetts, June 9-12, 2010. IEEE Computer Society, 2010.

37

http://www.wisdom.weizmann.ac.il/~oded/p_aggm.html

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[EY80] Shimon Even and Yacov Yacobi. Cryptocomplexity and NP-completeness. In J. W.
de Bakker and Jan van Leeuwen, editors, ICALP, volume 85 of Lecture Notes in
Computer Science, pages 195–207. Springer, 1980.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets.
SIAM J. Comput., 22(5):994–1005, 1993.

[GG98] Oded Goldreich and Shafi Goldwasser. On the possibility of basing cryptography on
the assumption that P 6= NP., 1998. Unpublished manuscript.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gol97] Oded Goldreich. Notes on levin’s theory of average-case complexity. Electronic Col-
loquium on Computational Complexity (ECCC), 4(58), 1997.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Juris Hartmanis, editor, STOC, pages 59–68. ACM, 1986.

[GSTS07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on
the worst-case, then it is easy to find their hard instances. Computational Complexity,
16(4):412–441, 2007.

[GTS07] Dan Gutfreund and Amnon Ta-Shma. Worst-case to average-case reductions revisited.
In Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors,
APPROX-RANDOM, volume 4627 of Lecture Notes in Computer Science, pages 569–
583. Springer, 2007.

[HMX10] Iftach Haitner, Mohammad Mahmoody, and David Xiao. A new sampling protocol
and applications to basing cryptographic primitives on the hardness of NP. In IEEE
Conference on Computational Complexity [DBL10], pages 76–87.

[Hoe63] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association, 58(301):13–30, March 1963.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP in-
stances than picking uniformly at random. In FOCS, pages 812–821. IEEE Computer
Society, 1990.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, pages 134–147. IEEE Computer Society, 1995.

[Imp11] Russell Impagliazzo. Relativized separations of worst-case and average-case complexi-
ties for NP. In IEEE Conference on Computational Complexity, pages 104–114. IEEE
Computer Society, 2011.

[Lem79] Abraham Lempel. Cryptology in transition. ACM Comput. Surv., 11(4):285–303,
1979.

38

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In Shai Halevi, editor, CRYPTO,
volume 5677 of Lecture Notes in Computer Science, pages 577–594. Springer, 2009.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and appli-
cations to Ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

[MX10] Mohammad Mahmoody and David Xiao. On the power of randomized reductions and
the checkability of sat. In IEEE Conference on Computational Complexity [DBL10],
pages 64–75.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, STOC, pages 333–342. ACM,
2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[Reg10] Oded Regev. The learning with errors problem (invited survey). In IEEE Conference
on Computational Complexity [DBL10], pages 191–204.

[Rub90] Ronitt Rubinfeld. A mathematical theory of self-checking, self-testing and self-
correcting programs. PhD thesis, UC Berkeley, 1990.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the xor lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Wat12] Thomas Watson. Relativized worlds without worst-case to average-case reductions for
NP. TOCT, 4(3):8, 2012.

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes.
Theor. Comput. Sci., 26:287–300, 1983.

39

	1 Introduction
	1.1 Contributions of this Paper
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Concentration Bounds
	2.3 Interactive Proofs
	2.4 Histograms and the First Wasserstein Distance
	2.5 The Parallel Lower Bound and Histogram Verification Protocols
	2.6 Worst-Case to Average-Case Reductions

	3 Technical Overview
	3.1 The proof of Bogdanov and Trevisan
	3.2 Our Proof

	4 The New Protocols
	4.1 Choosing a Random Threshold
	4.2 Preliminaries
	4.3 The new Heavy Samples Protocol
	4.4 The new Hiding Protocol

	5 Analysis of the New Heavy Samples Protocol
	5.1 Proof of Completeness: Overview
	5.2 Proof of Soundness: Overview
	5.3 Proof of Completeness: the Details
	5.4 Proof of Soundness: the Details

	6 Analysis of the New Hiding Protocol
	6.1 Proof of Completeness: Overview
	6.2 Proof of Soundness: Overview
	6.3 Proof of Completeness: the Details
	6.4 Proof of Soundness: the Details

