Skip to main content

On the Smoothed Heights of Trie and Patricia Index Trees

  • Conference paper
  • 1276 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Abstract

Two of the most popular data structures for storing strings are the Trie and the Patricia index trees. Let H n denote the height of the Trie (the Patricia, respectively) on a set of n strings. It is well known that under the uniform distribution model on the strings, for Trie H n /logn → 2 and for Patricia H n /logn → 1, when n approaches infinity. Nevertheless, in the worst case, the height of the Trie on n strings is unbounded, and the height of the Patricia on n strings is in Θ(n). To better understand the practical performance of both the Trie and Patricia index trees, we investigate these two classical data structures in a smoothed analysis model. Given a set \({\cal S} = \{s_1, s_2, \ldots, s_n\}\) of n binary strings, we perturb the set by adding an i.i.d Bernoulli random noise to each bit of every string. We show that the resulting smoothed heights of Trie and Patricia trees are both Θ(logn).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chung, K.L., Erdös, P.: On the application of the Borel-Cantelli lemma. Transactions of the American Mathematical Society 72, 179–186 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Springer (1974)

    Google Scholar 

  3. Devroye, L.: A probabilistic analysis of the height of tries and of the complexity of triesort. Acta Informatica 21, 229–237 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Flajolet, P.: On the performance evaluation of extendible hashing and trie search. Acta Informatica 20, 345–369 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flajolet, P., Steyaert, J.M.: A branching process arising in dynamic hashing, trie searching and polynomial factorization. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 239–251. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  6. Fredkin, E.: Trie memory. Communications of the ACM 3, 490–499 (1960)

    Article  Google Scholar 

  7. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. III. Addison-Wesley (1973)

    Google Scholar 

  8. Mendelson, H.: Analysis of extendible hashing. IEEE Transactions on Software Engineering 8, 611–619 (1982)

    Article  MATH  Google Scholar 

  9. Morrison, D.R.: Patricia — practical algorithm to retrieve information coded in alphanumeric. Journal of the ACM 15, 514–534 (1968)

    Article  Google Scholar 

  10. Nilsson, S., Tikkanen, M.: An experimental study of compression methods for dynamic tries. Algorithmica 33, 19–33 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pittel, B.: Asymptotical growth of a class of random trees. Annals of Probability 13, 414–427 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pittel, B.: Path in a random digital tree: limiting distributions. Advances in Applied Probability 18, 139–155 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Régnier, M.: On the average height of trees in digital searching and dynamic hashing. Information Processing Letters 13, 64–66 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51, 385–463 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Szpankowski, W.: Some results on V-ary asymmetric tries. Journal of Algorithms 9, 224–244 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Szpankowski, W.: Digital data structures and order statistics. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382, pp. 206–217. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tong, W., Goebel, R., Lin, G. (2014). On the Smoothed Heights of Trie and Patricia Index Trees. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics